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Abstract— The treatment of peripheral arterial disease is
typically performed using catheters and requires surgeon to
manually navigate the guidewire to the affected region within
the artery. Different image modalities such as CT, X-Ray can
be employed by the surgeon to navigate the guidewire to the
target location. Delays during navigation can lead to increased
radiation exposure to the clinician, particularly if the X-Ray
images are acquired using a X-Ray machine such as C-Arm.
Thus, automated guidewire navigation using images acquired
with a C-Arm is critical. Accurate continuous 3D tracking
of guidewire tip is important during automated navigation
and comprises of three key tasks: subject pose estimation,
guidewire segmentation and reconstruction, and path planning.
The guidewire tracking needs to be fast and should be able to
achieve high sub-mm accuracy. In this project, we propose fully-
automated approaches to address each sub-task and evaluate
their performance using sample guidewire X-Ray images. Our
approach is able to robustly segment guidewire under various
occlusions and perform 3D reconstruction with acceptable
accuracy. We also compare two path-planning strategies and
develop an efficient pose estimation algorithm.

I. INTRODUCTION

Peripheral Arterial Disease (PAD) is a common cardio-
vascular disease associated with the accumulation of plaque
in the peripheral blood vessels, which restricts blood flow
in the affected region. Reduced blood flow leads to de-
creased oxygenation of the concerned tissue which leads to
tissue death and subsequently, life threatening scenario [1].
Catheter-based procedures have been quite popular for treat-
ing patients with PAD [2], primarily due to their minimally-
invasive nature compared to open-heart surgery as well as
reduced trauma for the patients due to localized intervention.
During the procedure, a catheter containing a guidewire is
inserted through a vasculature and the cardiologist uses real-
time imaging system to visualize the relevant anatomy and
navigate the guidewire, till it reaches the blocked blood
vessel. Guidewires are frequently used for many cardiovas-
cular procedures and various studies have been proposed
to improve their tracking during surgery. Detection and
segmentation of wire-like structures is a challenging problem
for medical imaging applications as well as computer vision.
Since X-Rays are harmful, these devices have been designed
to employ small X-Rays doses. As a result, the shot noise
leading to a signal-to-noise ratio proportional to the square
root of the number of photons received by each X-Ray
detector unit, the acquired signal exhibits a low signal-to-
noise ratio. Here, our main interest is the segmentation and
accurate position estimation of the guidewire from X-Ray
images acquired using a C-Arm. Despite the high spatial
resolution (≈ 0.5 mm per pixel) of C-Arm images, detection
of guidewires is challenging due to the following reasons:

1) Low thickness of guidewire (≈ 2-3 pixels)
2) Significant non-rigid motion of the guidewire between

subsequent frames, both due to guidewire translation
and C-Arm’s rotation

3) 2D projections of 3D anatomy leads to overlapping
structures (primarily vessel edges) leading to occlusion
as well as presence of non-relevant thin and curvilinear
structures similar to guidewire, which interfere with
segmentation.

Automated 3D reconstruction of guidewire needs to be
accurate for wire-tip tracking as well as robust to noise and
imaging artifacts. During reconstruction, multiple images are
acquired by moving the C-Arm along the plane parallel to the
curvature plane of the guidewire. This leads to repeated ra-
diation exposure for personnel involved and hence, the com-
plete process of guidewire segmentation and re-construction
needs to be real-time. Moreover, initial path generation for
guidewire navigation is important, not only to understand
the feasibility of the procedure, but also to ensure a safer
procedure by continuously performing motion planning to
correct guidewire misalignment and avoid interaction with
the vessel boundaries. Given these challenges, in this project,
we evaluate multiple approaches for three key tasks critical
for automated navigation and analyse their performance:

1) Guidewire segmentation: We propose a novel two-
step approach which extracts the guidewire and is also
robust to the motion of the C-Arm.

2) 3D-Reconstruction: We compare filtered back pro-
jection and iterative approaches for accurate guide
reconstruction.

3) Initial Path Planning: We compare two path-planning
approaches for initial path generation for navigating
guidewire within the 3D phantom.

Additionally, since during the surgical procedure, the patient
can be aligned in an arbitrary pose, we need to perform an
initial 3D pose estimation and subsequently correct for the
angular displacement during 3D reconstruction. We evaluate
a framework for 2D/3D image registration between C-Arm
X-Ray images and 3D CT scan, comparing keypoint and
pixel similarity-based approaches. We leverage digitally re-
constructed radiographs (DRR) with GPU acceleration for
generating 2D projections of the CT volume and register
them against the C-Arm images.

A. Related Work

1) Guidewire Segmentation: Conventional guidewire seg-
mentation methods, relying on image features such as pixel
intensity, texture or histogram, fail to detect guidewires



accurately. Methods based on active contours or level sets
are prone to image artifacts and other wire-like objects. Brost
et al. [3] developed a model-based lasso catheter tracking
algorithm. However, their method required manual initial-
ization or a model provided by the detection method and
did not generalize to guidewires. While multiple approaches
for catheter segmentation have been proposed, they primarily
rely on catheter electrodes or magnetic markers and are not
relevant to guidewire segmentation, due to lack of relevant
features. Approaches for guidewire segmentation can be
classified into three groups: a) tracing methods; b) shortest
path methods and c) bottom-up grouping method. Bottom-
up growing methods rely on detecting line segments initially
and building the guidewire curve from the segments using
segment linking and curvature-based optimization criterion.
Honnorat et al. [4] present a bottom-up approach relying on
steerable filters and tensor voting to identify relevant line
segments (primitives) which is followed by clustering and
ordering-based linking. Most approaches enhance the wire-
like structures such as guidewire using Hessian-based filter
by computing the vesselness or rely on curvilinear struc-
tures detector for extracting the support of the guidewire.
Beyar et al. [5] used a combination of filter-based method
and Hough transform to extract wire-like objects and fit a
polynomial curve onto them. Hessian filtering is combined
with a B-spline fitting-based approach using the gradient
image derived from Hessian filter and the catheter shape from
the previous frame. The drawback with these approaches
is the manual initialization required in the first frame of
fluoroscopic sequence and the requirement that the length of
catheter should not change much between frames. Machine
learning-based approaches which leverage probabilistic ap-
proach or recently deep learning segmentation frameworks
such as U-Net have been leveraged to counter these chal-
lenges. Navab et al. [6] used randomly generated deformable
models while Barbu et al. [7] used marginal space learning to
track the target object using manual annotations. Wang et al.
[8] applied region proposal network (RPN) on X-Ray images
achieving close to 90% segmentation accuracy. Ambrosini et
al. [9] proposed a fully-automatic U-Net based segmentation
approach, wherein the catheter is segmented using the CNN
and centerline is extracted using skeletonization and branch
linking.

2) 3D Guidewire Reconstruction: Guidewire reconstruc-
tion is typically done using biplanar images and primarily
two types of approaches have been proposed: backprojection-
based and epipolar-constraint-based. Baert et al. [10] pro-
posed the first approach to multiview 3D reconstruction of
curvilinear objects, which required generating a 2D curve
for each image by placing interest points. Papalarozou et
al. [11] proposed another approach for rigid and deformable
objects. Limited studies focus on 3D guidewire position
reconstruction using monoplanar images. Buckner et al. [12]
proposed a recursive probability density propagation based
approach to build a 3D probability distribution of the wire
position and used particle filter to perform temporal update
of the distribution. Walsum et al. [13] leverage minimum

cost algorithm to select appropriate solution, however, the
uncertainty in reconstruction is not fully addressed due
to the complex self-intersecting shapes generated from the
guidewire in projections. Esthappan et al. [14] use a 2D/3D
registration to find a rigid body transform to align the
predetermined 3D model of guidewire tip to single 2D image.
Petkovic et al. [15] leveraged prior knowledge of the blood
vessels in 3D volume to constrain a backprojection-based
approach using monoplanar images acquired from C-Arm.
Most of the approaches rely on preexisting 3D volume to
constrain the solution space. To alleviate these limitations,
Hoffman et al. [3] presented a semiautomatic approach
requiring detection using manual clicks followed by point
correspondence and triangulation to achieve final reconstruc-
tion. Baur et. al. [?] proposed a robust approach for catheters
in fluoroscopic sequences by relying on epipolar gemoetry-
based triangulation and incorporating prior knowledge about
the catheters in a probabilistic graphical model, subsequently
minimizing the reprojection and epipolar projection errors.

3) Path Planning: Given a 3D vascular model, path
planning involves computing trajectories which are used to
define the ideal position and direction of guidewire during
navigation. Path planning algorithms thus aim to solve a
two-point boundary value problem in R3 in the presence of
obstacles. A semiautomatic method of trajectory planning for
vascular navigation was proposed in [16] which used a level-
set segmentation to find nodes corresponding to the vessel’s
center. Cheng et al. [17] applied skeletonization techniques
to extract blood vessel centerlines to perform efficient path
planning for endovascular surgical tools. Traditional studies
relied on simplified techniques such as vessel centerline
extraction or deterministic path planning while recent ap-
proaches explore collision-free approaches used for robot-
path planning with Rapidly Exploring Random-Trees (RRT)
[18] being quite popular. RRT is a popular graph-based
method which is suited for problems involving obstacles
and differential constraints. RRT constructs a space-filling
tree by randomly sampling points and expanding into largest
Voronoi regions of the graph. Reachability-based constraints
[19] have been applied on RRTs to make them efficient by
restricting their search space towards nodes closer to the goal.
Schafer et al. [20] proposed a graph-representation-based
technique to compute guidewire paths inside the carotid
artery which returns a unique solution for specific vessel
geometries. Fauser et al. [21] proposed a cubic-Bezier spline
based RRT to compute curvature constrained trajectories. Re-
cent research has leveraged robotics studies and explored the
application of the ‘learning from demonstration’ framework
by training machine learning models on clinician’s demon-
strations. Chi et al. [22] proposed a robotic platform for
semiautonomous catheter movement that leverages anatom-
ical landmarks and non-rigid registration to map catheter
tip trajectories in different anatomical settings. The catheter
proximal and tip motion patterns were jointly encoded using
a Gaussian Mixture Model trained on demonstrations and
the model was used as a trajectory generator for different
subjects.



We follow the following outline in this report. In Section
II, we introduce the components of our imaging system
and describe the approaches explored for guidewire seg-
mentation, path planning, 3D reconstruction and initial pose
estimation. We present our experimental setup in Section III
and present the results in Section IV highlighting the efficacy
of our proposed approaches.

II. MATERIALS AND METHODS

A. Imaging System

In this paper, we use the OEC 9800 Plus system (GE
Healthcare, Chicago, USA) to acquire images. The field of
view is approximately 20 cm and the system has a resolution
of 512 px×512 px. We retrieved the live images from the
system using the Orion HD (Matrox, Dorval, Canada) frame
grabber in combination with MIL-Lite and the Matlab®

Image Acquisition Toolbox™ (MathWorks, Natick, USA).
We leveraged the distortion correction approach presented in
[23] for all experiments.

B. Mechanical Setup

Vessel Phantom and Guidewire: We use a 3D printed
coronary vessel phantom for this project. The phantom
comprises of the heart and two major vessels surround-
ing the heart which bifurcate into thinner branches.The
guidewire is machined from superelastic Nitinol tubes (John-
son Matthey®, London, United Kingdom) and has an outer
diameter 0.889 mm (0.035" or 2.67 F).

C. Guidewire Segmentation

We follow a two-step approach for segmenting the
guidewire and localizing its tip. The first steps involves
highlighting the vessel boundaries and generating an initial
mask for separating guidewire pixels from vessel boundary
pixels. We apply distortion and isocentre correction on
original X-Ray images before applying our segmentation
algorithm. Given the corrected X-Ray image I, we apply
’Difference of Gaussian’ based filter to highlight the vessel-
like structures, using smoothened (Is) and original versions
of the image I. Smoothing is done using median filtering
(filter size = 9px x 9px) leading to removal of guidewire
from Is, which helps us in delineating the vessel boundaries
only. We leverage the B-COSFIRE filter [24] which has
been shown to be effective in localizing vessel-like struc-
tures. Before filtering, we apply anisotropic diffusion-based
filtering to remove noise and enhance boundary regions in
I. We also apply adaptive histogram equalization, to account
for fluctuating X-Ray intensities between subsequent frames,
and enhance the contrast of acquired X-Ray image. We apply
thresholding on COSFIRE filter outputs of smoothened and
original images to obtain masks (IsC and IC) corresponding
to vessel boundaries and vessel boundaries + guidewire
regions. We subtract IsC from IC and apply morphological
operations along with region area-based selection to obtain
a binary mask Img corresponding to the regions pertaining to
guidewire.

In the second step, we focus on segmenting the region
around the tip of the guidewire. We follow the popular
curvilinear structure detection approach proposed by Steger
et al. [25] to highlight ridge structures in the contrast
enhanced image. We use the parameter values of sigma = 1 ,
tlower = 1 and thigher = 3 for applying the ridge detector. Ridge
detection segments the guidewire very well but also responds
to vessel related edges. Hence, to separate the guidewire
related pixels, we leverage the binary mask Img and identify
the ridges belonging to the guidewire.

We compared alternate filtering approaches for determin-
ing vesselness, which rely on computing the eigenvalues of
the Hessian matrix. These included Meijering neuriteness,
Sato tubeness, Frangi vesselness and Hessian vesselness fil-
ters. We also explored using keypoint-correspondence based
matching using SIFT to track guidewire across multiple
images but found it to be suboptimal particularly when the
images were acquired at angles more than 20° apart.

D. Path Planning

To enable safe and accurate navigation of the guidewire
within the vessel, initial path planning is vital, as it enables
us to visualize the ideal path to be followed by the guidewire
and define a set of target points to be followed while moving
inside the vessel. We formulate path-planning as a shortest
path problem between the start and end points defined by
the user. Since our initial navigation problem is relatively
simple i.e. the start and goal points in the phantom are easily
reachable without major obstacles or curvature, we follow a
deterministic approach which relies on using a predefined
cost function. The shortest path problem is transformed to
defining a cost function for various paths within the vessel
structure. Consider a curve P, which defines a navigation
path from point S to any point, x. In general, the curve P is
a minimal path with respect to a metric γ if it minimizes the
following energy functional:

Eγ(P) =
∫

P
γ(P(l), Ṗ(l))dl (1)

where l is the arclength. The solution to the minimum path
integral can be obtained by defining a minimal distance map,
D : c→ R+ defined as D(x) = minP E(P) for any path P
linking S to x in the domain c ⊂ R2. We leverage the 2D
Fast Marching Method (FMM) proposed by Sethian et al.
[26] to extract the shortest path P. Given an image I, FMM
satisfies the Eikonal equation:

||OD(x)||= γ(x),∀x ∈ I; D(S) = 0 (2)

wherein D may be regarded as the arrival time of a front
propagating from S with velocity 1/γ(x). The map D has
only one local minimum at starting point S and the key goal
of FMM is to define an efficient γ(x) to propagate the front
efficiently. FMM has been successfully applied for minimal-
path extraction and centerline computation in robotic and
surgical navigation studies [27] [28].

1) 2D Shortest Path Computation: We initially formulate
our path-planning algorithm on a simple 2D phantom. To
constrain the shortest path within the vessel region, we



Fig. 1: Guidewire Segmentation: Row 1 - COSFIRE filter output with guidewire being removed (through smoothing), Row 2- COSFIRE
filter output with guidewire and vessel boundaries captured, Row 3 - Guidewire tip segment localization via ridge detection; segmented
tip section highlighted in ’Yellow’

segment the vessel’s internal region and define a binary mask
Iv upon which FMM is applied. To construct Iv, we rely on
edge-based segmentation rather than intensity-based thresh-
olding due to intensity variations within the phantom. We
smooth the image using a median filter (span=9) and apply
adaptive histogram equalization to enhance the contrast. Post
preprocessing, we apply Hessian-based multi-scale Frangi
vesselness filter [29] to detect the ridges corresponding to
phantom’s walls and threshold the filtered image using Otsu
thresholding to obtain a binary mask Iw. After inverting Iw
and analyzing the various connected components based on
their area and bounding box dimensions, the vessel’s internal
region is delineated and the smooth mask Iv is defined.
Before applying FMM on the extracted mask, we shrink
it by 10 pixels so that the shortest-path maintains minimal
distance from phantom’s wall. To define target points on P,
we fit a third-order spline and sub-sampled 6% points. Fig. 5
highlights the distance map and extracted paths along with
target points.

2) 3D Centerline Extraction: After successfully exploring
the Fast Marching-based approach in 2D settings, we focus
on applying FMM to the 3D vascular model obtained from
the CT scan. We compare FMM with another popular ap-
proach relying on graph-based centerline extraction using the
software VMTK [30]. Whereas FMM relies on shortest path
and would typically prefer straight path with minimal curves,
centerlines follow a maximum-obstacle avoidance approach
following the curvature of the 3D volume. Centerlines were
extracted using active contour level set segmentation and per-
forming a weighted geodesic search over Voronoi diagram.
Voronoi diagram is a partition of a plane with n points into
convex polygons, such that each polygon contains exactly
one generating point and every point in a given polygon is
closest to its generating point. Voronoi diagrams are created
using Delaunuy Traingulation [31]. Centerlines are computed
as the paths defined on the Voronoi diagram that minimize
the integral of the radius of maximal inscribed spheres along
the path. This is equivalent to finding the shortest paths in
the radius metric using a formulation similar to FMM, by



Fig. 2: Failure of alternate vesselness filters to delineate the
guidewire and vessel boundaries completely; Sato, Meijering,
Frangi and Hessian (left to right)

Fig. 3: Failure of SIFT-based keypoint matching in estimating
translation between two frames at 60° and 80°; Very few keypoints
are detected on the phantom

Fig. 4: Rigid registration-based tracking: (a) Failure to register
between frames at 20° and 40°; (b) Successful registration between
frames at 60° and 80°

propagating a wave from a source point and using inverse
of the radius as the wave speed. The arrival times of the
wave for all the points on Voronoi diagram is computed
and gradient of arrival times is used to construct the path
from the target point. For every point belonging to the
Voronoi diagram, there’s a sphere centered in that point that

(b)(a)

Fig. 5: Illustration of path planning for guidewire navigation: a)
Distance-map generated using 2D Fast Marching Method with
starting point, S, and b) 3 shortest paths starting from S (S→ E1,
S→ E2, S→ E3) with target points, T .

Fig. 6: Illustration of initial paths computed for 3D-CT vascular:
a) Centerline extraction using Voronoi diagram b) Shortest path
computed using 3D FMM

is a maximal inscribed sphere. Each point on the centerline
is thus associated with a corresponding maximal inscribed
sphere radius.

Given a 3D volume V , we perform hole filling and surface
smoothing before extracting the centerline. This leads to Vb
which is our binary volume for constraining the path search.
Pre-processing is important since centerlines are influenced
by the surface geometry of the ROI. The output of VMTK is
a set of centerline points, C ∈ R3 which naturally constrain
the guidewire position by vessel geometry. We also apply
3D FMM algorithm between the same set of start and end
points and compare the shortest path with longer curved path
computed using centerlines. The 3D FMM is conceptually
similar to 2D FMM described earlier.

E. 3D-Reconstruction1

Accurate reconstruction of guidewire using monoplanar
image is an ill-constrained problem, given the multiple poses
of guidewire which could lead to same projection image. As
such typically two or more C-Arm images are utilized to
determine the guidewire pixels in reconstructed 3D volume.
Since multiple X-Ray images require frequent repoisitioning
of C-Arm which is time-consuming, the reconstruction of
guidewire in a particular configuration needs to be per-
formed with minimal number of images. Here, we compare
Filtered Back Projection and iterative reconstruction-based
approaches along with evaluating splines for smoothing

1Work done jointly with Florian Heemeyer



the guidewire. For each method, we compare its accuracy
with varying 2D input image counts and C-Arm’s angular
displacements.

1) Filtered Back Projection (FBP): Backprojection is a
standard method of reconstructing CT images. Backprojec-
tion simply runs the projections back through the image to
obtain a rough approximation of the original volume. These
projections interact constructively in the regions correspond-
ing to the actual object in 3D volume. A problem with
backprojection is the blurring artifacts that occur in other
parts of the reconstructed image. Hence, FBP [32] leverages
a high pass filter(typically a ramp filter in noiseless cases) to
eliminate blurring. We use FBP as our baseline. An example
of the C-Arm imaging geometry is shown in Fig. 7. The C-
Arm imaging configuration is defined by the world position
of the X-Ray source and the world position and the number
and dimensions of pixels of the image plane(detector). The
perspective geometry needs to be known and the projection
matrix computation requires relative distances of source from
imaging volume and detector. These values are derived from
the C-Arm manual. We perform distortion correction and
isocentric alignment of X-Ray images before applying FBP.

2) Iterative Reconstruction: We leverage gradient-based
iterative construction algorithm called FISTA [33] with Total
Variation based regularization. The objective function for
FISTA is given as:

minx||P(x)− I||2 +2λ ||x||TV (3)

where I is the observed 2D image data, P(x) is a linear
projection mapping applied on a volume x and λ is the
regularization coefficient.

3) Spline Smoothing: We initially use an interpolation-
based smoothing wherein only significant deviations in 3D
wire are removed. Spline-based approaches [15] have been
leveraged to smoothen the 3D reconstructed curve and we
explore fitting natural cubic splines to generate smooth
guidewire curves.

F. Initial Patient Pose Estimation

1) DRR Generation: DRR generation addresses the
problem of finding X-Ray detector response using the
Beer-Lambert law [34]. DRR generation approaches have
been grouped into analytic(ray-tracing) and statistical(Monte
Carlo(MC) Simulation) approaches. Ray-tracing tries to
model the attenuation of photon as it passes through the
anatomical region, the total attenuation along various 3D
lines is computed and applied to photons traveling in that
particular direction [35]. While most ray tracing approaches
consider only single type of material and fails to account for
beam hardening. Moreover, given its a analytic approach,
statistical processes such as scattering during the image
formation cannot be modeled. MC methods evaluate the
probability of photon-matter interaction and its sequence
determines the attenuation [36]. It requires material decom-
position in CT volume which is typically achieved using
thresholds called Houndfield units (HU) and spectra of the
emitter. MC is very realistic and but is computationally very

Fig. 7: C-Arm Imaging Configuration (Petkovic et al. [15])

Fig. 8: Reconstruction Accuracy: Evaluating filtered back projection
based reconstruction for varying image count and angular displace-
ment between images: a)3 vs 5 images b)10 vs 15 degrees

expensive. This leads to various simulation challenges related
to realistic nature of modeling as well as fast generation
of images.In our case, we leverage DeepDRR [37], which
was proposed to overcome these challenges and leverages
segmentation of typical materials in CT(air, soft tissue and
bone) to determine individual contribution of each material
to the total attenuation density. Each material’s contribution
to the total attenuation density at detector position u are
computed using a given geometry (defined by projection
matrix P ∈ R3x4) and X-Ray spectral density p0(E) via ray-



Fig. 9: Row 1 - Reconstruction Accuracy of FBP and TV-
regularized FISTA; Row 2: 2D projections of 3D reconstruction
for FBP with spline smoothing, FBP with interpolated smoothing
and FISTA with regularization (in order) a)Forward projections at
65° b)Forward projections at 45°

tracing:

p(u) =
∫

p(E,u)du (4)

=
∫

p0(E)exp( ∑
m∈M

δ (m,M(x))(
µ

ρ
)m(E)

∫
ρ(x)dlu)dE (5)

where δ (., .) is Kronecker delta, lu is 3D ray connecting
the source position and 3D location of detector pixel u
determined by P, ( µ

ρ
)m(E) is the material and energy depen-

dent attenuation coefficient and ρ(x) is the material density
derived at position x based on HU values.

Also, since we are using the ASTRA toolbox which allows
us to compute forward projection, we compared the DRRs
derived from ASTRA with DRRs generated using DeepDRR.

2) 2D Registration: We select two reference X-Ray im-
ages at 0° and 90° of our 3D phantom in horizontal position
(ideal setting). To determine the subject pose, we perform a
spatial alignment between the DRR and reference images us-
ing rigid image registration. We follow an iterative approach,
starting with DRRs generated at 5° and matching them with
reference image to find the best aligned DRR. This gives
us a rough initial pose estimate which we refine iteratively
by comparing DRRs within ±5°, generated at an angular
displacement of 1°. The second step gives a finer estimate
of actual pose. We use the Euler Transform to perform
the registration and use Mean Squared Difference(MSD)
and Normalized Mutual Information(NMI) based similarity
measures to determine the best aligning DRRs. We leverage
the elastix [38] toolbox to perform the registration, which
gives us multiple options for image transformations, metrics
and points sampling. The cost function for registration to be
minimized is given by:

C(Tw; IF , IM) =−S(Tw, IF , IM)+ γP(Tw) (6)

where S is the similarity measure mentioned above, γ is the
regularization coefficient, P is the penalty term, IF is the fixed

Fig. 10: Initial Pose Estimation: Row 1 - DRR Projections obtained
from DeepDRR and ASTRA toolbox; Row 2 - Registration of DRR
with X-Ray reference image a)DRR at 90°, b)DRR at 75°. Row 3 -
Similarity metrics computed between DRR projections at multiple
angles and reference X-Ray image at 90; NMI values are high and
quite close at both 75° and 90° while MSD values are quite apart
°

image, IM is the moving image and Tw is the image-to-image
transformation parameterized by w.

III. EXPERIMENTAL SETUP
1) Guidewire Segmentation: We acquired ≈ 240 X-Ray

images at 5° orbital shift with 4 different positions of
the guidewire in the vascular phantom. This enables us to
evaluate our algorithm for multiple guidewire and C-Arm
configurations.

2) 3D Reconstruction: 10 images of the guidewire in
standard configuration (predetermined curvature) were uti-
lized to evaluate FBP and FISTA reconstruction methods.
The images were acquired at angles θi ∈ [40°,130°] at an
interval of 10°. The guidewire was segmented manually in
the acquired images to define the ground-truth 2D images
IgI for evaluation. To find the reconstruction error, the 2D
projections Iri of reconstructed guidewire were obtained
at θi and pair of nearest guidewire-located points were



determined from Ir and Ig. Subsequently, euclidean norm was
computed between the 2D position in Ig and corresponding
2D position in Ir. This was calculated for all 10 angles.
The reconstruction error, referred to as pixel displacement
is given by: δαk = ||p̂rk− pgk||2

3) Path Planning: We created a 3D vascular dicom
dataset by segmenting the phantom from the CT-scan using
thresholding and used it to create paths.

4) Pose Estimation: We use the 3D vascular dataset to
generate DRRs for angles ranging from 0° to 130° at an
interval of 5° and evaluate the similarity metric at each angle
post registering the DRR with X-Ray image acquired at 90°
orbital position of C-Arm. Our ground truth pose is zero
degrees and DRR projection at 90° should maximally align
with the X-Ray image.

IV. RESULTS AND FUTURE WORK

1) Guidewire Segmentation: : We were able to segment
guidewire accurately and localize the guidewire segment
starting from the tip across multiple C-Arm positions (Fig 1)
using combination of a vessel highlighting filter and simple
ridge detector. We found B-COSFIRE filter to outperform
other vesselness filters in capturing vessel boundaries anf
guidewire. We tried tracking vessel areas and region sur-
rounding guidewire betwween frames, using SIFT and rigid
registration, but found both approaches to be unreliable, par-
ticularly in C-Arm orbital position below 40°. Additionally,
we also explored deep learning-based object tracking frame-
works such as SiamMask but found them prone to failure.
While our segmentation performs wuite well, we need to
integrate it with a tracking method to robustly segment the
guidewire. The next step is to improve the robustness of ridge
detector and leverage Multiple Hypothesis Tracking [39] to
track the ridges corresponding to the guidewire. Additionally,
we could also explore b-splines to model the guidewire and
deform it using the gradient field computed using COSFIRE
filters, this approach however assumes limited distortion and
motion of the guidewire and might be prone to failure.

2) Path Planning: : We present the results of centerline-
based and shortest-path (using 3D FMM) planning in Fig.
6. The centerline path follows the curvature of the vessels
and maintains maximal distance from vessel boundaries.
Shortest-path computes relatively straight paths and main-
tains minimal distance from vessel boundary. This might
be helpful in guidewire navigation due to the mechanical
constraints of the guidewire and easier motion control under
straight paths. However, maintaining a minimal distance
from vessel boundaries is critical and hence, we can explore
rapidly-exploring random trees which are robust to obstacles
and can be constrained using splines and goal reachability to
generate smoother paths, particularly in regions with larger
curvature.

3) 3D Reconstruction: : All reconstruction approaches
are able to achieve median displacement error within 2
pixels(≈ 0.9mm). We also found that imaging around a
plane within ±30 degrees of the true curvature plane leads

to reconstruction with no significant increase in displace-
ment error. This is critical since the C-Arm has a limited
orbital span and moreover, images acquired between 35-
50 ° are corrupted due to interference from the operating
table. Hence, for curvature planes not lying within ideal
angular positions of the C-Arm, the reconstruction has to
be performed from nearest ideal angular position. We found
a combination of 5 images with 15° angular separation to
result in lowest displacement error in forward projections
with respect to the true guidewire position Fig 8. We also
found spline-based smoothing and TV-regularization to result
in smoother reconstruction compared to interpolation-based
smoothing (Fig 9). FISTA-based iterative approach led to
lower displacement errors compared to FBP, however the
average reconstruction time was almost 10 times (20 sec vs
2 sec for FBP).

4) Initial Pose Estimation: We found DRR derived using
DeepDRR to be much better than ray-tracing algorithm
provided by ASTRA (Fig 10). DeepDRR also takes into
account different anatomical materials for X-Ray attenuation
and simulates scattering and beam hardening in an improved
manner. We had to apply contrast-enhancement on generated
DRRs to enhance their quality for subsequent registration.
To determine the true subject pose using image-registration
between DRR and X-Ray image, we found image similarity
metrics to perform quite well in responding maximally to
actual patient pose. For future work, we suggest combining
image and edge-map based similarities to make the algorithm
more robust. Moreover, a single metric such as NMI might
respond similarly to two different positions (75° and 90°) in
our case and we propose to use a combination of metrics
such as NMI and MSD for robustness.
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