Simulation of within-host dynamics in patients infected by HIV

Aslihan Celik, Anirudh Choudhary, Farshad Rafiei

Group 2.27

Modeling & Simulation (CSE6730) Final project

GitHub Repository: https://github.gatech.edu/frafiei3/CSE6730

Spring 2020

Tutorial: Simulation of within-host dynamics in patients infected by
HIV

The goal of this tutorial is to model the “viral dynamics” of HIV infection and examine the effectiveness of antiretroviral drug
when used to treat HIV patients. Generally, HIV disease progression consist of three main phases: acute, chronic and AIDS.
Each of these phases are characterized by changes in CD4+ T-cell count and the plasma viral load. The first part of this
project includes simulating the first phase of virus spread using stochastic agent-based modeling of HIV transmission. We
used “cell-to-cell transmission” hypothesis for this reason to simulate the T-cell dynamics in acute phase. In the second part
of the project, we extended the analysis by discrete time modeling of differential equations which is used to explain the HIV
infection kinetics in AIDS phase as well as system’s behavior when undergoes a long-term treatment. Finally, we opt for
reinforcement learning-based approach to determine optimal treatment strategy for patients with HIV and use a ODE
simulation model to generate the patient clinical data. This ODE model takes into account drug combinations and we
compare the performance of RL-based model with 'high drug' dosage and 'no drug dosage' strategies, tracking their
physiological response to separate classes of treatments and determine the optimal drug level to be administered to the
patient.

Through this tutorial, we develop three ways to model and analyse the HIV dynamics and response to treatment with
inhibitors (drugs). Our models are based on empirically motivated HIV models developed in various studies.To validate our
models, we run simulations with different model parameters and analyze the infection dynamics.

Part 1 - Cellullar Automata Model : In this section, our aim is to simulate the first phase of HIV infection (acute phase) and
show how an arbitrary initial infection in a lattice like cell population can lead in progression of virus within a host body[1].
https://github.gatech.edu/frafiei3/CSE6730/blob/master/hiv%20cellular%20automata%20simulations.ipynb
(https://github.gatech.edu/frafiei3/ CSE6730/blob/master/hiv¥%20cellular%20automata%20simulations.ipynb)

Part 2 - ODE-based Mean-Field Model: In this section, we focus on modeling the spread of virus in third phase (AIDS) and
try to simulate the HIV growth dynamics using the concept of ordinary differential equations (ODEs) [2,3]. We examine the
effect of treatment on our simulations and see how this can slow down and even decrease the growth of infection within a
host. https://github.gatech.edu/frafiei3/CSE6730/blob/master/hiv¥%20mean%20field%20simulations.ipynb
(https://github.gatech.edu/frafiei3/CSE6730/blob/master/hiv¥%20mean%20field%20simulations.ipynb)

Part 3 - ODE and Reinforcement Learning based treatment strategy: Finally, we opt for reinforcement learning to find
optimal treatment plan and use a ODE model proposed by Adams et. al.[5] to simulate patients with HIV. Such treatment
plans are also referred to as Structured Treatment Intervention (STI). Various studies[5][6] have explored using mathematical
models of HIV infection dynamics for addressing the problem of designing STI treatments. These models are usually
represented by a set of Ordinary Differential Equations(ODEs) and control theory is applied to deduce STI strategies.
Reinforcement Learning(RL) computes control strategy directly from the measured trajectories and does not need the apriori
identification of model of system dynamics.
https://github.gatech.edu/frafiei3/CSE6730/blob/master/hiv%20treatment%20RL.ipynb
(https://github.gatech.edu/frafiei3/CSE6730/blob/master/hiv%20treatment%20RL.ipynb)

https://github.gatech.edu/frafiei3/CSE6730/blob/master/hiv%20cellular%20automata%20simulations.ipynb
https://github.gatech.edu/frafiei3/CSE6730/blob/master/hiv%20mean%20field%20simulations.ipynb
https://github.gatech.edu/frafiei3/CSE6730/blob/master/hiv%20treatment%20RL.ipynb

[1]:

hiv cellular automata simulations

April 28, 2020

1 Part 1: Cellular Automata

In the first part of this tutorial we’ll apply the concept of Cellular Automata (CA) to model HIV
disease progression in acute phase

1.0.1 The phenomenon to be modeled and simulated

The immune response to any virus is generated by a complex web of interactions among differ-
ent types of white blood cells (monocytes, T and B cells). The time scale to develop a specific
immune response may vary from days to weeks. In the case of HIV, the entire course of infec-
tion involves two different time scales. The primary infection exhibits the same characteristics as
any other viral infection: a dramatic increase of the virus population during the first 2-6 weeks,
followed by a sharp decline, due to the action of the immune system. However, instead of being
completely eliminated after the primary infection, as many other viruses, a low HIV concentra-
tion is detected for a long asymptomatic time: the clinical latency period. This period may vary
from one to ten (or more) years. Besides the low virus burden detected during this period, a
gradual deterioration of the immune system is manifested by the reduction of CD4+T-cell popu-
lations in the peripheral blood. The third phase of the disease is achieved when the concentration
of the T cells is lower than a critical value (~30%), leading to the development of AIDS. As a
consequence, the patient normally dies from opportunistic diseases. In this section our aim is to
simulate the first phase of HIV infection (acute phase) and show how an arbitrary initial infection
in a lattice like cell population can lead in progression of virus within a host body. - Reference:
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.87.168102

1.0.2 Conceptual Model

Let the world be a square nzn grid G = G(t) of cells that evolve over time, which is discrete and
measured in weeks. Every cell of G shows a T-cell which could potentially be in one of the following
states: * UNINFECTED: Normal state of T-cell at the beginning of the simulation. This states
mean that the cell is uninfected and hence it is in a healthy state. * INFECTED: The T-cell is
infected. It takes 7 weeks for the infected T-cell to die. * DEAD: The T-cell is dead at this state.
It can be replaced with an uninfected T-cell by immune sytem (with probability p_repl) or remain

dead.
Let’s associate these states with the following integers:

import numpy as np
import scipy as sc
import scipy.sparse

[2]:

[3]:

import random
import matplotlib.pyplot as plt
from ipywidgets import interact

Possible states:
EMPTY = -1
UNINFECTED = O
INFECTED = 1

DEAD = 2

The initial configuration is composed of healthy cells, with a small fraction, p_ HIV, of infected
cells, representing the initial contamination by the HIV. The follwoing function creates a (n+2)z(n+
2) T-cell population lattice with assigning empty to surrounding cells and an initial configuration
to the interior cells by randomly assigning INFECTED to p_ HIV of them and leave rest of them
to be equal to UNINFECTED cells.

def GridMap(m, I_fraction):
Returns an n by n NumPy array of integer values that are empty on the,
—boundary
and an initial configuration in interior with some cells marked as infected
and rest of them marked as uninfected

nimnn

GM = EMPTY * np.ones(shape=(n+2,n+2), dtype=int)

GM[1:-1, 1:-1] = UNINFECTED

num_Infection = int(I_fraction * n * n)

sequence = [i for i in range(n)]

idx_row, idx_col = np.zeros(num_Infection), np.zeros(num_Infection)

for i in range(num_Infection):
idx_row[i] = random.choice(sequence)
idx_col[i] = random.choice(sequence)

+ +

for i in range(num_Infection):
GM[int (idx_row([i]), int(idx_col[il)]

INFECTED
return GM

def show_peeps(GM, vmin=EMPTY, vmax=DEAD, values="states"):

mnn

A helper routine to visualize a 2-D world
nimnn
assert values in ["states", "bool"]
if values == "states":
vticks = range(vmin, vmax+1)
vlabels = ["EMPTY", "UNINFECTED", "INFECTED", "DEAD"]

else:
vticks = [0, 1]
vlabels = ["False (0)", "True (1)"]

m, n = GM.shape[0]-2, GM.shape[1]-2

plt.pcolor(GM, vmin=vmin, vmax=vmax, edgecolor='black')
cb = plt.colorbar()

cb.set_ticks(vticks)

cb.set_ticklabels(vlabels)

plt.axis('square')

plt.axis([0, m+2, 0, n+2])

Create an initial world
N = 100
p_HIV = 0.1

peeps_0 = GridMap(N, p_HIV)
show_peeps (peeps_0)

100 DEAD
80
INFECTED
60
40
UNINFECTED
20
0 EMPTY
0 20 40 60 8 100

Let’s define some functions to help us identify uninfected, infected and dead T-cells in our world
and calculate the ratio of them with respect to the total number of T-cells in the world

[4]: def uninfected(GM):

nimnn

Given a grid map, GM, it returns:

[5]:

- a boolean grid whose (%,j) entry equals 1 when GM[%,5] is uninfected andy

—~0 otherwise,

def

- ratio of the uninfected cells to total number of cells
GM_uninfected = (GM==UNINFECTED) .astype(int)

num_uninfected = len(np.where(GM_uninfected) [0])

ratio = num_uninfected / ((GM.shape[0]-2) * (GM.shape[1]-2))
return GM_uninfected, ratio

infected(GM) :

nimnn

Given a grid map, GM, it returns:
- a boolean grid whose (%,j5) entry equals 1 when GM[%i,5] is infected and O

—otherwise,

def

- ratio of the infected cells to total number of cells
GM_infected = (GM==INFECTED) .astype(int)

num_infected = len(np.where(GM_infected) [0])

ratio = num_infected / ((GM.shape[0]-2) * (GM.shapel[1]-2))
return GM_infected, ratio

dead (GM) :

nimnn

Given a grid map, GM, it returns:
- a boolean grid whose (i,j5) entry equals 1 when GM[%,7] is dead and O,

—~otherwise,

- ratio of the dead cells to total number of cells
GM_dead = (GM==DEAD) .astype(int)

num_dead = len(np.where(GM_dead) [0])

ratio = num_dead / ((GM.shape[0]-2) * (GM.shape[1]-2))
return GM_dead, ratio

Time evolution Let’s define rules which determined how the infection spreads within the host.
Each of the time steps used in this simulation is equivalent to a week and includes following;:

Update of a healthy cell If it has at least R (R {1,2,3,4}) infected neighbors, it becomes
infected. Otherwise, it stays healthy.

Update of an infected cell An infected cell becomes a dead cell after 7 time steps.
Update of a dead cell A dead cell can be replaced by a healthy cell with probability p_ repl
in the next time step. Each healthy cell can get infected again.

To help determine which cells are prone to infection in a given time step, let’s write a function to

determine who is exposed.

def

exposed (GM) :

nimnn

Given a grid map, GM, returns a boolean grid whose (%i,7) entry equals 1
when GM[%,7] has at least one infected neighbor, and O otherwise.

nimnn

E = np.zeros(shape=GM.shape, dtype=int)

I, _ = infected(GM)
E[1:-1, 1:-1] = I[0:-2, 1:-1] | I[1:-1, 2:1 | I[2:, 1:-1] | I[1:-1, 0:-2]
return E

show_peeps (exposed(peeps_0), values="bool")

100

True (1)

False (0)

0 20 40 60 80 100

To determine the infected cells in subsequent time step, we need a function to count the number
of infected cells surrounding a specific cell. Given this function, we can now determine how the

infection spreads in next time step.

[6]: def count_surrounding(GM):
Given grid map, GM, returns a grid whose (%,7) entry equals
to the number of infected neighbors for element GM[%,7].

nimnn

C = np.zeros(shape=GM.shape, dtype=int)

I, _ = infected(GM)
cf1:-1, 1:-1] = 1[0:-2, 1:-1] + I[1:-1, 2:] + I[2:, 1:-1] + I[1:-1, 0:-2]
return C

def spreads(GM, threshold=1):

mnn

Given grid map, GM, returns a boolean grid whose (%,j5) entry equals
to 1 when the cell GM[%, 5] has all conditions to get infection in

subsequent time step, and O otherwise.
mnimn

threshold = threshold # minimum number of neighbors needed to infect any,
—uninfected cell

UI,_ = uninfected(GM)

G_s = (UL * exposed(GM) * (count_surrounding(GM) > threshold))

return G_s

show_peeps (spreads (peeps_0), values="bool")

100

80

True (1)
60
40

False (0)

0 20 40 60 80 100

Now we can write a routine to simulate one time step to determine the spread, given grid map GM.

[7]: def step_spread(GM):

mnn

Stmulates one time step of a SPREAD and

returns a grid of the resulting states

return GM + spreads(GM)

show_peeps (step_spread(peeps_0), values="bool")

100

True (1)

False (0)

20

0 20 40 60 80 100

Next, we need to implement a function that accounts for death of infected cells in 7 time steps.
We also, need a function to replace dead cells with healthy cells after one time step, with some
probability.

[9]: | def recover(GM, p_repl):
mimn
Given grtd map, GM, and replacement probability, p_repl,
returns a boolean grid whose (i,7) element equals to 0, when
the GM[4, 7] replaces with a healthy cell, and 1 otherwise.
Note: O selcetd because it'll set the elemnt in GM to UNINFECTED state.
As such, 1 will leave the GM[%i,7] element unchanged.
random_draw = np.random.uniform(size=GM.shape)
D, _ = dead(GM)
G_.r = (D * (random_draw < p_repl))
return (1-G_r).astype(int)

def step_dead(GM, GM_tau, tau):
mimn
Given grid map, GM, and tau grid map history of GM, returns a grid map
after replacing infected cells, which were infected in tua steps before,
by DEDA state (2). It does mot change the status of other cells.
I = np.ones(GM.shape)
for i in range(tau):
I1, = infected(GM_tauli,:,:])

I=1=%TI1
GM_d = GM + I
return GM_d

It’s time to combine all we have together to see what happens when a grid like cell structure gets
infected with HIV virus. In the following, we set the max steps to 100, which shows the maximum
number of generations that our simulation will take. Also, we set 7 = 4, which indicates that
it takes 4 time steps (i.e. weeks) for an infected cell to become a dead cell. Finally, we set the
probability of cell recovery after its death to 90%.

[10]: def sim(G_O, max_steps=100, tau=4, p_repl=0.90):

mnn

Given an initial grid map, G_O0, returns mar_steps generations of HIV spread

tau: represents the time required for the immune system to
develop a specific response to kill an infected cell
p_repl: probability by which dead cells could be replaced with healthy cells
In the first tau steps, there will only be spread (no dead cells):
G_null = GridMap(G_O.shape[0]-2, 0)
G_all = np.repeat(G_null [np.newaxis,:,:], max_steps, axis=0)
G_all[0,:,:] = step_spread(G_0)
for idx in range(1,tau):
G_all[idx,:,:] = step_spread(G_all[idx-1,:,:])

Infected cells will die in tau step and immune system will recover them,
—with probability p_repl:
_, infected_ratio = infected(G_all[tau-1,:,:])
t = tau
while(infected_ratio > 0) and (t < max_steps):
G_t = step_spread(G_all[t-1,:,:]1) # spread the wvirus
G_t = G_t * recover(G_t, p_repl) # recover dead cells with p_prepl,
—probability
G_t = step_dead(G_t, G_all[t-tau:t,:,:], tau) # tau-step before,
—1infected cells become dead cells
G_all[t,:,:] = G_t # store the result

Update the stop criterion
_, infected_ratio = infected(G_t)
t=t+1

return G_all

test = sim(peeps_0)

[13]: def compute_ratio(G_O0, GM_all):

nmnn

Given initial configuraion and all generations of spread,
returns three matrices, which shows uninfected cell ratzo,
infected cell ratio and dead cell ratio to the total number
of cells, respectively.

uninfected_ratio = np.zeros(GM_all.shape[0]+1)
infected_ratio = np.zeros(GM_all.shape[0]+1)

dead_ratio = np.zeros(GM_all.shape[0]+1)

_, uninfected_ratio[0] = uninfected(G_0)
_, infected_ratio[0] = infected(G_0)
_, dead_ratio[0] = dead(G_0)

for i in range(l, GM_all.shapel[0]):

_, uninfected ratio[i] = uninfected(GM_allli,:,:])
, infected_ratio[i] = infected(GM_alll[i,:,:])
_, dead_ratio[i] = dead(GM_alll[i,:,:])

return uninfected_ratio, infected_ratio, dead_ratio

UR, IR, DR = compute_ratio(peeps_0, test)
plt.plot(UR[:20], 'ys—-')

plt.plot(IR[:20], 'r*--')

plt.plot(DR[:20], 'bo--')
plt.legend(['UNINFECTED', 'INFECTED', 'DEAD'])
plt.xticks(np.arange(0, 20, step=2))
plt.xlabel('Week')

plt.ylabel('Density')

[13]: Text(0, 0.5, 'Density')

10 1

08 1
> 061 UNINFECTED
@ ~%- INFECTED
v
) 0.4 - -®- DEAD

021 X

“, /\e\.*_*‘*
/ o-9-a-9-
001 o-o-o-¢ o-o-¥ Ll L o SO SO GP AP,

T T T T T T

0 2 4 6 8 10 12 14 16 18
Week

[12]: def isim(N, p_HIV, max_steps=100, tau=4, p_repl=0.9, plot_to=20):
G_0 = GridMap(N, p_HIV)
G_t = sim(G_0, max_steps=max_steps, tau=tau, p_repl=p_repl)
UR, IR, DR = compute_ratio(G_O, G_t)
plt.plot(UR[:plot_tol, 'ys--')
plt.plot(IR[:plot_tol, 'r*x--')
plt.plot(DR[:plot_tol, 'bo--')
plt.legend(['UNINFECTED', 'INFECTED', 'DEAD'])
plt.xticks(np.arange(0, plot_to, step=2))
plt.xlabel('Week')
plt.ylabel('Density')

interact(isim,
N = (10,100,10),
p_HIV = (0.1,0.9,0.1),
max_steps = (20,1000,2),
tau = (1,6,1),
p_repl = (0,1,0.1),
plot_to = (10,100,10));

interactive(children=(IntSlider(value=50, description='N', min=10, step=10), FloatSlider(value:

[]1:

10

N 50

p_HIV j 0.50
max_steps 100
tau 4
p_repl 0.90
plot_to =(20
10 _
Y
* H
h \
08 1 'r “
! e
] W
»>0671 % e UNINFECTED
a { i -~ INFECTED
o ' -e- DEAD
O 04 * R
N
I \
I
02 " \\Q\
I %
I N S
I LN
00{ oo-o-$ R e o hu—,

The following shows the simulation from the reference paper which is very similar to our simulations. Note that, in this section, we aimed just to simulate the
behavior after weeks of infection and hence our simulations should reflect the behavior of left figure in the following.

0 4 [}
8 o[1lseese
= ®
= 1
[
[0)]
3 I
o]
) I, % %
el %
V7777
5 10 0 2 4 6 8 10 12
Weeks Years

FIG. 2. The results obtained from our simulations for a two-
dimensional lattice with L = 700, py;y = 0.05,R = 4, 7 = 4,
Pinfec = 1073, Prept = 0.99. The evolution of the population den-
sities exhibits the same three-phase dynamics observed for in-
fected patients. We have adopted open squares for healthy cells,
full circles for infected cells, and open triangles for dead cells.

4/28/2020 hiv mean field simulations

Part 2: HIV Simulations Using Mean-Field Model

Introduction

Modeling in HIV has proven to be helpful in many ways. Specifically the authors of [1] note that because of
insights gained from modeling they conclude that more emphasis needs to be put on finding a vaccine instead
of treatment. This conduction was made because models show that viral loads persist even in long term
simulations.

Modelling HIV dynamics are useful to compare the efficency levels of different treatments. Paper [2] explores the
HIV models of patients that are treated with Highly Active Antiretroviral Therapy (HAART). According to paper,
patients mostly achieve undetectable viral loads when they are treated with HAART for long periods of time.

Both of the papers referenced, review developments in HIV modeling. They display the quantitative discoveries
about HIV, the rate of generation of HIV variants, treatments and response to drug therapy. In this tutorial we are
simulating the HIV models from papers [1] and [2] by using the Mean-field Model to observe characteristics of
HIV infection and to provide insight into the treatments.

Background

In implementing the discrete and continuous simulations of three HIV models including the models both before
and after treatment, the following papers are used:

[1]Perelson, Alan S., and Ruy M. Ribeiro. "Modeling the within-host dynamics of HIV infection." BMC biology
11.1 (2013): 96. https://link.springer.com/content/pdf/10.1186/1741-7007-11-96.pdf
(https://link.springer.com/content/pdf/10.1186/1741-7007-11-96.pdf)

[2]Di Mascio, Michele, et al. "Modeling the long-term control of viremia in HIV-1 infected patients treated with
antiretroviral therapy." Mathematical biosciences 188.1-2 (2004): 47-62.
https://www.sciencedirect.com/science/article/pii/S0025556403001305
(https://www.sciencedirect.com/science/article/pii/S0025556403001305)

In [25]: import numpy as np
import matplotlib.pyplot as plt

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 1/20

https://link.springer.com/content/pdf/10.1186/1741-7007-11-96.pdf
https://www.sciencedirect.com/science/article/pii/S0025556403001305

4/28/2020 hiv mean field simulations

First HIV model -- Modeling virus growth and infected cells.
Following the notation from we can begin to implement our first model using the notation and equations from [1]

In first HIV model initially each cell has two types of possible states which are "T" and "I". "T" represents the
uninfected target cells while "I" represents the infected cells."T" cells are mostly CD4+ T cells which are
susceptible for infection. "V" represents the free virus. In a mean-field model, you would first define a time-
dependent variable for each cell states which you interpret as the fraction of the population in that state and a
dependent variable for the virus. That is, let

« T; be the fraction of the cells that is susceptible at (discrete) time t;
« I, be the fraction that is infected at #; and
« V, be the fraction of virus at ¢,

where T; + I, = 1 since infected cells I and uninfected target cells T" are complementary we always only need
to compute one in order to compute the other. We will implicitly assume that the number of individuals is large
enough that we can treat these fractions as being continuous.

« A is a parameter that represents the constant rate per cell that T cells are produced
 dr is a parameter that represents the die rate of T cells per cell

o VT represents the rate that T cells get infected by free virus

« J is the rate that | cells are lost

» pisthe rate per cell that V (free viruses) are produced by | cells

e c is the rate per virus that V are cleared from circulation

Then, a corresponding discrete-time dynamical system might be
Ty =T, + A—drT; - pViT,
Iy =1+ pViT; — 461,
Viee =Vi+pl = ¢V,

The first step will be to define a discrete logical mapping F_hiv_1 by using the differential equations from [1]

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 2/20

4/28/2020 hiv mean field simulations

In [48]: def F _hiv 1(x,t, lambda 1, d t, beta, p, c):
Description:Logical map to find discrete values for time t+1 by usin
g time t values for T cells,
Viral load and infected cells. I variable is implicitly
calculated by using T values
since they are complementary to each other.
Input: Numpy array x with T and V variables and parameters of model
s.
Output:The future values of T, and V stored in the Numpy array calle
d x next.

monon

#x = (T, V)
X next = x.copy ()

BEGIN SOLUTION

T, V=20,1

I = 1 - xX[T] #we can always easily recover I

X next[T] max(0, xX[T] + (lambda 1 - d t*x[T]- beta*x[V]*x[T]))
X _next[V] max(0, x[V] + p*I - c*x[V])

END SOLUTION

return X next

Now that we have a logical map we need to write a simulation function which steps the logical map forward in
time. Below function returns the T and V values in discrete time steps for the selected HIV model.

In [49]: def sim(fun, t max, x0, **fun args):

Description:Simulating a discrete model.
Input: fun representing the function for logical map,
t max for number of iterations of time,
x0 as the initial values for state variables
**fun args for set of parameters that the logical map takes
Output:2D Numpy array X representing simulation values. Rows are tim
e and columns are state variables.

mooon

X = np.zeros ((len(x0), t max+l))

X[:, 0] = np.array (x0) #initial conditions
for t in range (t _max):

X[:, t+1] = fun(X[:, t],t, **fun_args)
return X

Now we will create a plotting function to visualize the results of our discrete simulation of the First HIV model
described above.

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 3/20

4/28/2020

hiv mean field simulations

In [50]: def plot sim 1 (X,alpha, t, d t, beta,p, c):

moon

Description:Plotting the discrete model.2D Plot of the simulation va
lues including

T, V and I values on y axis versus time on x axis.

Input:X as 2D numpy array to plot simulation values that contains th
e following:

in X[0, :] Susceptible T-cells T
in X[1, :] Viral load v
in X[2, :] Infected cells I

Output:none

moon

t max = X.shape[l] - 1

T =

use

plt
plt
plt
plt
plt
plt.

np.arange (t max+1l)
points = len (T) <= 30

.plot (T, X[0, :], 'ys--' if use points else 'y-')
.plot (T, X[1, :], 'r*--' if use points else 'r--")
.plot (T, 1. - X[0, :], 'bo--' if use points else 'b--")

.legend (['T', 'V', 'I'])
.xlabel('Time")

ylabel('Virus and Cell Loads')

#plt.axis ([0, t max+1, 0, 1])
#plt.title ("alpha = {}, tau = {}, kappa = {}".format (alpha, tau, k

appa))

Now we can set up some constants for our discrete First HIV model provided above and run our simulation with
these values and observe the plot including the change of state variables which are T as T-cells which are
susceptible cells for infection, V' as viral load and [as infected cells .

file:///Users/frafiei3/Downloads/hiv mean field simulations.html

4/20

4/28/2020 hiv mean field simulations

In [51]: T MAX = 30

ALPHA = 1. / 3
LAMBDA L= 0.1
DT=0.2

BETA = 0.3

P =20.4

C = 0.27

X[:, t] = [T t, V. t]
x0 = np.array ([ALPHA, 0])

#create simulation data
X = sim (F_hiv 1,T MAX, x0, lambda 1=LAMBDA L, d t=D T, beta=BETA, p=P,
c=C)

#plot simulation data
plot sim 1 (X, ALPHA, LAMBDA L, D T,BETA, P, C)

12 A T omemmmmmmmmm———eee
104{=--1 e
0.8 - S ersemaeemm———————

0.6 - /

0.4 1 /

Virus and Cell Loads

0.2 1 §

004 !

0 5 10 15 20 25 30
Time

From the discrete simulation plot above, we observe that number of infected cells grow as the viral load grows
over time. In accordance with this the number of susceptible cells which are T cells decreases over time. Before
we continue our observations we will also implement a continous version of this simulation that is based on the
ordinary differential equations solver from numpy.

Implementation for continuous time

Next, suppose we wish to treat time as a continuous, rather than discrete, variable. Doing so gives rise to a
system of ordinary differential equations (ODEs):

. T() A—=drT(t) = pV ()T (1)
dy d o
T It | = pyT () — 61(t) = F(y),
V(1) pl() — cV (1)

where ¥(¢) is the state vector.

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 5/20

4/28/2020

hiv mean field simulations

« Use the initial population parameters T'(0) = a, I(0) = 1 — a, and V' (0) = 0. These values are set in the
y0[:2] array, below.

« « is the proportion of target cells that are alive.

« Store the results for T'(¢), I1(t), and V' (¢) for time points (i.e., including ¢ = 0) in three NumPy arrays named
T ode[:31], V_ode[:31],and I ode[:31], respectively. The plotting code below assume these

names.

Below code implements the ODE simulation for the First HIV model in continuous case.

In [52]:

Initial populations, i.e.,
np.array ([ALPHA,

yo0 =

[T(0), V(0)]

01)

from scipy.integrate import odeint

def F hiv ode (y, t,lambda 1, d t,beta, p, c):
return F _hiv 1 (y,t,lambda 1, d t,beta, p, c) -y

Time points at which to compute the solutions:

np.zeros ((2,

time =
Y =
Y[:, O]
Y=

T_ode
V_ode
I ode

np.arange (31).astype (float)

len (time)))
= y0[:2]

odeint (F_hiv_ ode,

Y[:, 01,
time,

args=(LAMBDA L, D T, BETA, P, C)).T

Y[0, :]
Y[1l, :]
1.0 - T ode

file:///Users/frafiei3/Downloads/hiv mean field simulations.html

6/20

4/28/2020
In [53]:
In [54]:

hiv mean field simulations

def plot sim ode 1 (T, V, I, time):

Description: Plotting the continuous First HIV model state variable

S.
Input:1D numpy arrays for state variables T, V, and I for First HIV

Model and 1D array "time" for time steps
Output: none

moon

t max = time[-1]
use points = len (time) <= 35

plt.plot (time, T, 'ys--' if use points else 'y-')
plt.plot (time, V, 'r*--' if use points else 'r--')
plt.plot (time, 1. - T, 'bo--' if use points else 'b--")

plt.legend (['T', 'V', 'I'])

plt.xlabel('Time')

plt.ylabel('Virus and Cell Loads')

#plt.axis ([0, t max+1l, 0, 1])

#plt.title ("lambda 1 = {}, d t = {},beta={}, p={}, c={}".format(lam
bda 1, d t,beta, p, c))

Figure to compare discrete-time and continuous-time models
plt.figure (figsize=(12, 6))

plt.subplot (1, 2, 1)

plot sim 1 (X, ALPHA, LAMBDA L, D T, BETA, P, C)

plt.subplot (1, 2, 2)

plot sim ode 1(T ode, V_ode, I ode, time)

12 - J -------------- 121 : ;r/ . e aialiafiafiadaied
—- - —- PP
-— s -o- | -
g &
10 /’ 10 - »
! o
4
/II I*
] e e L | * 00000000000000000
-
k- i 3 .‘.S
3 g6l N7 806 *7
5 06 - / 5 06 - H
c ! S f'
o 1 o
w ! w 1
5 04 i 5 04 *
/',“*» 'Iﬁ‘
] [
I I
I # '-..
02 ! — 024 | il] 1 TR p————
| !
I 1
] 1
004 ' 004 *
0 5 10 5 20 3 30 0 5 10 5 20 3 30

file:///Users/frafiei3/Downloads/hiv mean field simulations.html

7/20

4/28/2020 hiv mean field simulations

Plot for discrete time model can be seen on the left hand-side and the continuous time model can be seen on
right. We can observe from our simulation that T and | are complementary since a target cell will become and
infected cell.

The other main observation is that once a steady state is reached, The virus will stay in the system forever. Our
next model will look at what would happen if we start to give medicine to the patient in order to reduce the viral
load V.

Second HIV model -- Modeling treatment

In paper[2], we can find a model with differential equations that lets use observe the effect of treatment on the
viral load on a patient. This treatment helps in a way to cause the I cells to produce immature virus particles
which are non-infectious and it can prevent the succesful infection of a cell as well as decreasing the virus
level.To model this we will introduce new parameters, states and equations as follows:

« V; be the fraction of the Virus that is infectious (discrete) time t;
« Vi : be the fraction of the Virus that is non-infectious at ¢; and

where Vi, + Vv = 1 since infectious Virus V', and non-infectious Virus V ; are complementary we always
only need to compute one in order to compute the other. Here, we will also implicitly assume that the number of
individuals is large enough that we can treat these fractions as being continuous.

» ¢pgr is a parameter between 0 and 1 that represents the effectiviness of the inhibitor that prevents the
establishment of productive infection of a cell. egr = 1 implies 100% effective inhibitor.

» ¢py is a parameter that represents the effectiveness of protease inhibitor which prevents the maturation of
HIV virions into infectious particles.

Then, a corresponding discrete-time dynamical system might be
Ty =T+ A—drT, — (1 — erp)PVi T,
Ly = 1+ (1 = erp) VT, — 0l
Vi =V + (L —epppl; — Vi,
VNis1 =V +eprpl — Vnn

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 8/20

4/28/2020 hiv mean field simulations

In [55]: def F _hiv 2 (x,t,lambda 1, d t,beta, p, ¢, eps RT, eps PI):

moon

Description:Logical map for Second HIV Model to find discrete values
in time t+1 by using time t
values for T cells, Viral load of infectious virus, vira
1 load of non-infectious virus
and infected cells. I variable is implicitly calculated
by using T values since they are
complementary to each other.
Input: x as 1D numpy array that will contain
in x[0] Susceptible T-cells T
in x[1] Infectious Viral load V i
Output: 1D numpy array X next that returns state variables T and V_1i
values at time t+1

moon

#x = (T, V_ 1)
X _next = x.copy ()

T, Vi=0,1

I =1- x[T]

X next|[T] = max(0, xX[T] + (lambda 1 - d t*x[T]-(l-eps_RT)*beta*x[V
_i1*x[T]))

x next[V_i] = max(0, x[V_i] + (l-eps PI)*p*I - c*x[V_1i])

return X next

In [56]: def plot sim 2 (X):

moon

Description:Plotting the discrete model.2D Plot of the simulation va
lues including T, V and I values
on y axis versus time on x axis.
Input: X as 2D numpy array that will contain

in X[0, :] Susceptible T-cells T
in X[1, :] Infectious Viral load V 1
in X[2, :] Infected cells I

Output:none
mann

t max = X.shape[l] - 1

T = np.arange (t_max+1)
use points = len (T) <= 30

plt.plot (T, X[0, :], 'ys--' if use points else 'y-')
plt.plot (T, X[1, :], 'r*--' if use points else 'r--'")
plt.plot (T, 1. - X[0, :], 'bo--' if use points else 'b--")

plt.legend (['T', 'V.i', 'I'])
plt.xlabel('Time")
plt.ylabel('Virus and Cell Loads')
#plt.axis ([0, t max+1l, 0, 1])

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 9/20

4/28/2020 hiv mean field simulations

Implementation for continuous time

Next, suppose we wish to treat time as a continuous, rather than discrete, variable. Doing so gives rise to a
system of ordinary differential equations (ODEs):

T() A—=drT(t) — (1 — erp) V(T (1)
dy _dl 10 | _ (1 — erp)VI(OT(t) — 61(t) - 75)
dt dt| V(0 (1 — epp)pI(t) = V(1) B ’
Vi) eprpI(t) — cVny(1)

where y(?) is the state vector.

« Use the initial population parameters T'(0) = a and V;(0) = 10. These values are set in the y0[:2]
array, below.

» « is the proportion of target cells that are alive.

« Store the results for T'(t) and V;(t) for time points (i.e., including ¢ = 0) in two NumPy arrays named
T ode[:31]and V_i ode[:31] respectively. The plotting code below assume these names.

Make plotting function for continous simulation of second HIV model where we introduce the treatment
modeled in paper|[2]:

In [57]: def plot sim 2 ode (T, V.i, I, T):

mon

Description: Plotting the continuous Second HIV model state variable
s.

Input: T, V_i, and I as 1D numpy arrays for state variables in Secon
d HIV Model and 1D array T for time steps

Output: none

moon

t max = T [-1]
use points = len (T) <= 35

plt.plot (T _, T, 'ys--' if use points else 'y-')
plt.plot (T_, V_i, 'r*--' if use points else 'r--')
plt.plot (T_, 1. - T, 'bo--' if use points else 'b--")
plt.legend (['T', 'V_i', 'I'])

plt.xlabel('Time")

plt.ylabel('Virus and Cell Loads')

#plt.axis ([0, t max+1, 0, 1])

#plt.title ("lambda 1 = {}, d t = {},beta={}, p={}, c={}, eps RT={},
eps PI={}".format(lambda 1, d t,beta, p, ¢, eps RT, eps PI))

Prepare ODE function for continuous simulation of the Second HIV model:

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 10/20

4/28/2020 hiv mean field simulations

In [58]: ### BEGIN SOLUTION
from scipy.integrate import odeint

def F hiv 2 ode (y, t, lambda 1, d_t,beta, p, ¢, eps RT, eps PI):
return F_hiv 2 (y, t,lambda 1, d t,beta, p, ¢, eps RT, eps PI) - y

Now we can set up some constants and run our simulations for the Second HIV model that includes the
treatment mentioned in paper([2]:

In [59]: ALPHA = 1. / 3
LAMBDA L= 0.1
DT =0.2
BETA = 0.3
P =0.4
C = 0.27
EPS_RT =
EPS_PI

Il

o o
. .
NN

X[:, t] = [T t, V. i t]
x0 = np.array ([ALPHA, 10])

Run both discrete and continous simulations and plot for the Second HIV model. Once we run them we can use
the plotting functions to display the state variables over time.

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 11/20

4/28/2020

hiv mean field simulations
In [60]: | #create discrete simulation data
X = sim (F_hiv_2, T MAX, x0, lambda 1=LAMBDA L, d_t=D T, beta=BETA, p=P,
c=C, eps_RT = EPS_RT, eps_PI = EPS_PI)
time np.arange (T MAX).astype (float)
Y = np.zeros ((2, len (time)))
Y[:, 0] = x0[:2]

#create continous simulation data
Y = odeint (F_hiv_2 ode,
Y[:, 01,
time,

args=(LAMBDA L, D T, BETA, P, C, EPS RT,

EPS PI)).T
T ode Y[O0, :]

V_i ode Y[1, :]

I ode =

1.0 - T ode

V_ni ode =

1.0 - V_i ode

#plot both simulations

plt.figure (figsize=(12,
plt.subplot (1,
plot sim 2(X)
plt.subplot (1,

6))
2, 1)

2, 2)
plot sim 2 ode(T ode, V_i ode, I ode, time)
101 T 109 + T
\ ===V \ —*e
[-—— \ -0- |
|} \
1 \
81 4 8{ L
1 \
\ 1
1 \
2 \ 2 \
m \ o
301\ §61 1Y
8 \ 8 \
B \ T X
o \ © \
3 41 \ g 47 x
|- = \
S \ s \
Ay \
\\\ \\
2 1 \ 2
\\\ **
N
- S~ .,
SN ————l B —— ..m.“ﬂ.“‘“““m“"
0 0
T T T T T T T T T T T T T T
0 5 10 15 20 5 30 0 5 10 15 20 25 30
Time Time

down.

Plot for discrete time model can be seen on the left hand-side and the continuous time model can be seen on
right. As we can observe, if we start from some viral load, the treatment will bring down the amount of virus

file:///Users/frafiei3/Downloads/hiv mean field simulations.html

12/20

4/28/2020 hiv mean field simulations

According to [2], in real case scenarios we would observe a tapering off in the speed at which the virus is

cleared out. The paper refers to this as phase 1 and phase 2. There are a few ways to model this but we will do
it by introducing the latent cell M in the third HIV model below.

Third HIV model -- Modeling treatment phases

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 13/20

4/28/2020 hiv mean field simulations

In paper[2], we can find a model with differential equations that lets us observe the effect of treatment on the
viral load on a patient also during phase 2 of viral load. Third HIV Model introduces productively infected cells 1
Jlong-lived infected cells M * and latently infected cells L which means that these cells don't produce virions
until they get activated. To model this we will introduce new parameters, states and equations as follows:

. M,* be the fraction of the cells that are long-lived infected cells M * at ¢;
« L, be the fraction of the cells that are latent cells t;

The model we present below holds these:

e Vi, + Vi1 = 1 since infectious Virus V; and non-infectious Virus V' ; are complementary we always
only need to compute one in order to compute the other.

« Also M/ + I, + L, = 1 Here, we will also implicitly assume that the number of individuals is large enough
that we can treat these fractions as being continuous.

Introduction of new parameters:

» Trr and Tp; represents the pharmacological delay which takes into account that antiretroviral drugs are
not instantly active and the delay values may be different for reverse transcriptase inhibitors and protease
inhibitors

» T (non-infected susceptible cells) and M (long-lived cells) cells remain constant during the observation

» fi is the parameter for the rate that L cells are produced

0, is the constant rate that L cells die

« ks the constant rate that | cells are generated

+ k,, is the constant rate that M * cells are generated

« N is the average rate per cell that | cells produce virus

» D, is the average rate per cell that M * cells produce virus

« 0 is the constant rate that | cells are lost

 u is the constant rate that M * cells are lost

» ais the constant rate that L cells are activated into productively infected cells

» cis the constant rate that both the infectious and non-infectious virions are cleared

Then, a corresponding discrete-time dynamical system is:
Iy = 1 + (1 — egph(t — Trp) BTV + aL, — 61,
M}, = M7+ (1 —errh(t — trr)kpyy MV — uM?
Liyy =L+ (1 —errh(t — tre)) i TV —aLl, — 6L L,
Vi1t E Vi + (1 —eprh(t — tpp))NSIL + (1 — eprh(t — 7pp))ppy M — Vi,

VNits1 = Ve +eprh(t — trr) NI + epr h(t — tpp)py M — Vv

where h(t- 7) is a Heavyside function that takes 0 value for t< 7 and 1 value for t > .

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 14/20

4/28/2020 hiv mean field simulations

In [61]: def h(t,tau):

Description: Heavyside function used in the Third HIV model.
Input: Integer variable t as time and integer constant tau.
Output: 0 if t is less than tau and 1 if otherwise.
if(t<tau):

a=0
else:

a=1
return a

In [62]: def F hiv 3 (x, t, d_t, beta, c, eps RT, eps PI, a, beta M, mu, N, p M,
tau RT, tau PI, T, M, f k,delta, delta L):
Description: Third HIV model in discrete time.
Input: X as 1D numpy array that will contain
in x[0] Infected cells I

in x[1] Viral load vV i
in x[2] Long lived cells M*
in x[3] Latent cells L

Output: 1D numpy array X next that returns state variables I, M sta
r, V. i and L values at time t+1

mon

#x = (I, Vi, M star, L)
X next = x.copy ()

I, v.i, M star, L =0, 1, 2, 3

X next[I] = max(0, x[I] + (l-eps RT*h(t,tau RT))*beta*T*x[V_i]+
a*x[L]- delta*x[I])

x _next[M star] = max(0, x[M star] + (l-eps RT*h(t,tau RT))*beta M* M
*x[V_i]-mu*x[M star])

X _next[V_i] = max(0, x[V_i] +(l-eps_PI*h(t,tau PI))*N*delta*x[I]
+ (l-eps_PI*h(t,tau PI))*p M* x[M star] - c*x[V_i])

x_next[L] = max(0, x[L] + (l-eps RT*h(t,tau RT))*f k*T*x[V_i]-a
*L-delta L*x[L])

return X next

Implementation for continuous time

Next, suppose we wish to treat time as a continuous, rather than discrete, variable. Doing so gives rise to a
system of ordinary differential equations (ODEs):

I(?) (1 — errh(t — Trp))BTV(t) + aL(t) — 01(2)
5 J M*() (1 — errh(t — TR)k MV () — uM ™ (1) .
2 dr L@ |= (1 — errh(t — Trr)) /3 TV () — aL(t) — 6. L(7) = F(y),
Vi) (1 —eprh(t — zpr))NSI(t) + (1 — eprh(t — Tpr))ppy M*(2) — V(1)
Vi) eprh(t — Trr)NOI(t) + epr h(t — Tp)ppr M (1) — Vi1 (2)

where y(?) is the state vector.

file:///Users/frafiei3/Downloads/hiv mean field simulations.html

15/20

4/28/2020

hiv mean field simulations

« Use the initial population parameters 1(0) = 1 — a, V;(0) = 10, M ,,(0) = a, and L(0) = 0.1.

» « is the proportion of target cells that are alive.

« Store the results for 1,,4,(t), Vi, (t), M star,,.(t) and L,,, for time points (i.e., including ¢ = 0) in four
NumPy arrays named I_ode[:T MAX], V_i ode[:T MAX],M star ode[:T MAX] and
L ode[:T MAX] , respectively. The plotting code below assume these names.

In [63]:

def plot sim 3 (X):

moon

Description: Plotting the discrete model state variables.
Input: X as 2D numpy array that will contain
in X[0, :] Infected cells I

in X[1, :] Viral load V i
in X[2, :] Long lived cells M#*
in X[3, :] Latent cells L

Output: none

moon

t max = X.shape[l] - 1

T = np.arange (t_max+1)
use points = len (T) <= 30

plt.plot (T, X[0, :], 'ys--' if use points else 'y-')
plt.plot (T, X[1, :], 'r*--' if use points else 'r--'")
plt.plot (T, X[2, :], 'bo--' if use points else 'b--")
plt.plot (T, X[3, :], 'go--' if use points else 'g--')

plt.legend (['I', 'V_i', 'M*',6'L'])
plt.xlabel('Time')
plt.ylabel('Virus and Cell Loads')
#X[:, t] = [I t, Vi t, Mt, L t]

Prepare ODE for continous simulation of Third HIV Model:

In [64]:

#F phase 2 (x, t, d_t, beta, ¢, eps RT, eps PI, a, beta M, mu, N, p M, t
au RT, tau PI)

#Initial populations, i.e., [I(0), V_i(0), M star(0), L(0)]
y0 = np.array ([1.0 - ALPHA, 10 , ALPHA, .1])

Time points at which to compute the solutions:
time = np.arange (100).astype (float)

BEGIN SOLUTION
from scipy.integrate import odeint

def F _phase 2 ode (y, t, d t, beta, ¢, eps RT, eps PI, a, beta M, mu, N,
p M, tau RT, tau PI, T, M, f k, delta,delta L): #bu t burdaydi

return F_hiv 3 (y, t, d_t, beta, c, eps RT, eps PI, a, beta M, mu,
N, p M, tau RT, tau PI, T, M, f k,delta, delta L) - y

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 16/20

4/28/2020

hiv mean field simulations

Setup plotting for continous case:

In [65]: def plot sim ode (I, V_i, M star, L, time):

mon

Description:Plotting the continous model state variables.
Input: I -> Numpy ld array containing infected cell simulation value

V_i -> Numpy 1d array containing viral load simulation values

M star -> Numpy 1d array containing long lived infected cells.

tted

L -> Numpy 1ld array containing latent cell simulation values
time -> Numpy 1d array containing time steps that need to be plo

Output: none

moon

t max = time[-1]

use

plt
plt
plt
plt

plt.
.xlabel('Time")
.ylabel('Virus and Cell Loads')

plt
plt

points = len (time) <= 35

.plot (time, I, 'ys--' if use points else 'y-'")

.plot (time, V_i, 'r*--' if use points else 'r--"')
.plot (time, M star, 'bo--' if use points else 'b--"')
.plot (time, L, 'go--' if use points else 'g--"')

legend (['I', 'V.i', 'M*', 'L'])

#plt.axis ([0, t max+1, 0, 1])

Now we can set up some simulation parameters such as running time and also we need to set the various
model parameters. At the very bottom, we also intialize our state variables.

file:///Users/frafiei3/Downloads/hiv mean field simulations.html

17/20

4/28/2020 hiv mean field simulations

In [66]: T MAX = 100

ALPHA =1. / 3
LAMBDA L = 0.1

D T = 0.2
BETA = 0.3

P 0.4

C = 0.27
EPS RT = EPS PI = 0.8
A = 0.5
BETA M = 0.3

MU = 0.4

N C = 0.5

P M = 0.2

TAU RT = TAU PI = 60
T C =1

M C =1

F K = 0.3
DELTA 0.1
DELTA L = 0.4

T =1

M =1

f k = 0.3
delta = 0.1
delta L = 0.4

#X[:, t] = [I t, Vit, Mt, L t]
x0 = np.array ([1.0 - ALPHA, 10, ALPHA, 0.1])

Now we are ready to run both discrete and continous simulations. Once we run them we can use the plotting
functions to display the state variables over time.

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 18/20

4/28/2020 hiv mean field simulations

#create discrete simulation data

X = sim (F_hiv 3, T MAX, x0, d t=D T, beta=BETA, c=C, eps RT =
ps_PI = EPS PI,

In [67]:
EPS RT, e

a=A, beta M=BETA M, mu=MU, N=N C, p M=P M
, tau RT=TAU RT,
tau PI=TAU PI,

T=T C, M=M_C, f k=F K,delta

=DELTA, delta L=DELTA L)

Y = np.zeros ((4,
Y[:, 0] = x0[:4]
#create continous simulation data
Y = odeint (F_phase 2 ode,

Y[:, O],

time,

args=(D_T, BETA, C, EPS RT, EPS PI, A, BETA M, MU, N C, P M,

len (time)))

TAU_RT,

TAU PI, T C, M C, F K, DELTA, DELTA L)).T

I ode = Y[0, :]

V_ i ode = Y[1, :]

M star ode = Y[2, :]
L ode = Y[3, :]

#plot both simulations
plt.figure (figsize=(12,
plt.subplot (1, 2, 1)
plot sim 3(X)
plt.subplot (1, 2, 2)
plot sim ode(I ode, V_i ode, M star ode, L ode, time)

6))

80 A | |
-V ===\
P * 80 A - ME
70 1 M M
——- ——-
w B
60 -
] B
g %01 g
))
] o
O 40 [w]
o o
5 5%
w w
c 301 =
> >
/ LA ’
4 VA 7\
2 N 20 s
’ o g ‘\
o ,/\‘\ ' ,/,\\\
1049 Pt ,/1“\‘ . ‘_,4: 27NN
___--::: ———— - _ - ‘\\\\\ Yeccmm=== Tl - ‘\\ .
| - “\] fmmEEEmemm T - W
0 L N AR —— 0 L et N e ——
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 19/20

4/28/2020 hiv mean field simulations

Plot for discrete time model can be seen on the left hand-side and the continuous time model can be seen on
right. As can be observed from the plots once the drug therapy kicks in the level of plasma virus is predicted to
decay. After the treatment productively infected cells I decay faster compared to the long lived infected cells
M *. Both from the plot and the paper [2] if these two populations of cells are assumed to be the only sources
of virus, the second phase of decay extrapolates to zero residual infected cells in 2-3 years of completely
suppressive antiretroviral therapy.

file:///Users/frafiei3/Downloads/hiv mean field simulations.html 20/20

Part 3: HIV treatment using ODE simulation and reinforcement
learning

Introduction

Discovering effective treatment strategies for HIV remains a significant challenge in medical research. To date, the clinically effective way to
treat HIV is using a combination of anti-HIV drugs named as anitretrovirals to inhibit the development of drug resistant HIV strains. Anti-HIV
drugs are currently grouped into two main categories: Reverse Transcriptase inhibitors(RTI) and Protease Inhibitors(PI). RTIs prevent HIV
RNA from being converted into DNA which blocks the virus replication process initiated in the infected cell. Pls work at the final stage of viral
replication and attempt to prevent HIV from making new copies of itself by interfering with the HIV protease enzyme. This prevents new
copies of HIV from infecting new cells.

Although the combination of these drugs reduce and maintain the viral loads below the detection limit, their long term use can lead to
complications and patients often experience side-effects thus leading to poor compliance. Effective drug scheduling strategies have been
proposed to address this concern. The goal of drug-scheduling strategy is to bring the immune system into a state that allows it to
independently maintain immune control over the virus. Also, transfer to a drug-independent viral control situation needs to be done with as
low systemic effects as possible.

Structured treatment interruption (STI) is one such strategy which has received a lot of attention. In STI, the patient is cycled on and off drug
therapy. Since STl involves periods of relief from treatment, it is well received by the patients. When the treatment is interrupted, viral load
increases to a high level which leads to activating adaptive immune response. Repeated STI simulations has been observed to maintain
immune control over the virus in the absence of treatment.

Background

Previous studies have explored uzing mathematical models of HIV infection dynamics for addressing the problem of designing STI
treatments. These models are usually represented by a set of Ordinary Differential Equations(ODEs) and control theory is applied to deduce
STl strategies. Modeling the HIV infection dynamics is a complex task and along with selecting the right parametric system of ODEs, one
must fit their parameters to reflect quantitatively biological observations. Two main approaches have been proposed:

1. Control theory based studies first state an optimality criterion and then search for control strategies optimizing this criterion.
2. Reinforcement Learning(RL) computes control strategy directly from the measured trajectories and does not need the apriori
identification of model of system dynamics.

In this project, we investigate the feasibility of using RL to determine optimal dosing strategy for clinical data. We use simulation to artificially
generate the HIV clinical data. This is because of limited availability of publicly available HIV datasets.

Conceptual Model Diagram

A Am

CDA+ Teells (L) v HIV (V) ————-» Macrophages (M)

& ' Y
d ¢ dy

B Bum

i |

Infected CD4+ T] r Infected
cells (I) J Nd, Py 107 l macrophages (M)
k d dy,

3.1 HIV Simulation Model

Exercise 1 : (20 points) Design and implement a continous time model system for simulating the dynamics of viral load and infected cells
under STI strategy. The model should take into consideration that the patient characteristics can change and allow adjustment of drug
combinations (RTI and PI) to study the impact on patient's condition and viral dynamics.

Exercise 1.1: Write an ordinary differential equation to model the system.

We use the mathematical model proposed by Adams et. al.[1]. The model is a continuous ODE formulation. Although modeling HIV infection
requires taking into consideration multiple factors, we can choose a small subset of these factors to keep our model simple. The proposed
model includes the following patient wellness indicators, which adequately describe patient's condition (state) at a particular time:

1. T'1 : Infected CD4+ cells

2. T1* : Non-infected CD4+ cells

3. T2 : Infected macrophages

4. T2* : Non-infected macrophages

5. V : HIV Viral Load (RNA copies per ml of blood)

6. E : Immune effector CD8+ cells which measure the body's immune response to the presence of infected T-cells

The model should also include the action of commonly used antiretrovirals and allow using a combination of RTI and PI drugs which are
major classes of drugs used for HIV treatment. We define drug efficacy parameters €; and €, for this reason. €; models a reverse
transcriptase(RT) inhibitor and is more effective in maintaining population of CD4+ cells (T'1) while €, models the PT inhibitor. The efficacy of
the drug is controlled using f € [0, 1] and f * € defines the overall impact of the drug.

The populations of uninfected T'1 and T2 cells have different birth rates (4;) and death rates (d;). A complete description of the model
along with the parameters is included below:

Model Equations

These equations describe the complete dynamics of the state s = [T'1, 72, T1*, T2*, V, E] of the model:

T, () AM=—diTi(@®) — A = ek VIOT (1)
Ay —dodTo () — (1 = f* ek V(OT2(2)

T,(1)
G a|lTro (1 = ek VIOT| () = 6T} (1) = my BT} (0) -
a " d| | (1= fenkaVIOT3(t) = 6T5 () = my BT (1) = Fs),
vy | | (= edNralTr 0 + T3 01 = Vo) = [= e)pi ks Ti@) + (1 = fenpka Ty)V (1)
bp(Ty" ()+T5 (1)) de(T (O)+T5 (1))
E@) e+ momork, E T ook, b T OEE

Model Parameters

Parameters Value of Parameters Description
A1 10000 production rate of CD4+ cells
di 0.01 death rate of CD4+ cells
€1 [0,1) efficacy of RTI

€ [0, 1) efficacy of PI
ki 8.0 % 1077 infection rate of CD4+ cells
A 31.98 production rate of macrophages
dy 0.01 death rate of macrophages
f 0.34 reduction of treatment efficacy for macrophages
ky 1.0 10 infection rate of macrophages
) 0.7 death rate of infected cell
m 1.0 % 10‘5 immune-induced clearance rate for CD4+ cells
my 1.0 % 10‘5 immune-induced clearance rate for macrophages
Nr 100 virions produced per infected cell

c 13 natural death rate of virus

Parameters Value of Parameters Description

p1 1 average number of virions infecting a CD4+ cell
P2 1 average number of virions infecting a macrophage

Immune effector parameters

AE 1 production rate of immune effector/cytotix T-cell
bg 0.3 maximum birth rate for cytotoxic T-cell
Ky 100 saturation constant for cytotoxic T-cell birth
dp 0.25 maximum death rate for cytotoxic T-cell
K, 500 saturation constant for cytotoxic T-cell death
deltag 0.1 natural death rate of cytotoxic T-cells

In [1772]: %matplotlib inline
%load_ext autoreload
%autoreload 2

import numpy as np

import jdc

from scipy.integrate import odeint, ode
from IPython.display import clear output
from matplotlib import pyplot as plt
import collections

import seaborn as sns

import pandas as pd

The autoreload extension is already loaded. To reload it, use:
%sreload ext autoreload

Step 1

We define our ODE model equations here to compute %. The function returns the derivative ds. We also pass the drug efficacy parameter (

f) along with the efficacy parameters ¢; and ¢, . Since the model parameters defined above can vary between individuals, we pass an
additional list variable named params which allow us to simulate the impact of better immune system on the overall dynamics of HIV virus.

In [1773]:

def derivs
t1,t2,t

if para

lam

del
lam
ml
m2
bE
Kb
d E
Kd
else:
lam

ds =

(%]

tmpl

tmp2

ds[0]
ds[1]
ds[2]
ds[3]
ds[4]
ds[5]
return

dt(s,t=0,epsl=0,eps2=0,f=0.34,params=None) :
11,t21,v,e = s

ms is None:

bdal le4d

31.98

taE = 0.1

bdakE = 1
le-5
le-5
0.3
100

= 0.25

= 500

bdal, lambda2,dl,d2,kl,k2,delta,NT,c,rhol, rho2,deltak, lambdak,ml,m2,bE,Kb,d E,Kd = params

copy ()

(l-epsl) * k1 * v * t1

(1-f*epsl) * k2 * v * t2

lambdal - d1 * t1 - tmpl

lambda2 - d2 * t2 - tmp2

tmpl - delta * t1ll - ml * e * tll

tmp2 - delta * t21 - m2 * e * t21

(l-eps2) * NT * delta * (t1l1 + t21) - ¢ * v - ((1. - epsl) * rhol * k1 * t1 + (1. - f * epsl)
lambdaE + bE * (t11 + t21) / (tll + t21 + Kb) * e - d E * (t11l + t21) / (tll + t21 + Kd) * e
ds

»

Exercise 1.2(5 points) Find fixed points of the system (without treatment) and perform their stability analysis.

At steady state

d3

v = 0. However, since the equations are slightly complicated here, we utilize the fsolve function to solve for steady state.

We assume the standard model parameters and drug efficacy (€1, €3) is set to zero. We also consider states with positive state variables.

In

[1779]:

from scipy.optimize import fsolve
x02 = []
for i in range(5000):
X = np.random.uniform(0,100000,6)
x_temp = fsolve(derivs dt, x)
x_temp sum = np.sum(np.abs(derivs dt(x_temp)))

if (x_temp>=0).all() and x_temp sum < le-7:
x02.append(np.round(x_temp))
x_final = np.unique(x02,axis=0)
print("Fixed points of the system")
for x in x_final:
print(x)

/home/achoudhary/anaconda3/lib/python3.7/site-packages/scipy/optimize/minpack.py:162: RuntimeWarning: Th
e iteration is not making good progress, as measured by the

improvement from the last five Jacobian evaluations.

warnings.warn(msg, RuntimeWarning)
/home/achoudhary/anaconda3/lib/python3.7/site-packages/scipy/optimize/minpack.py:162: RuntimeWarning: Th
e iteration is not making good progress, as measured by the

improvement from the last ten iterations.

warnings.warn(msg, RuntimeWarning)

Fixed points of the system

[163573. 5. 11945. 46. 63919. 24.]
[664938. 50. 1207. 11. 6299. 207658.]
[967839. 621. 76. 6. 415. 353108.]
[1000000. 3198. 0. 0. 0. 10.]

Adams et. al. highlight that when both €1 and €, are zero, the dynamic model achieves four physical equilibrium points with all state
variables being non-negative.

1. Uninfected individual - (T, T2, T}, T, V', E) = (10000000, 3, 198, 0,0, 0, 10)

2. Infected individual - (T7, T2, T}*, T,", V, E) = (664938, 50, 1207, 11, 6299, 207658)
3. Infected individual - (T, T, T}*, T;*, V', E) = (967839, 621,76, 6,415, 353108)

4. Infected individual - (T, T», T}*, T, V', E) = (163573, 5, 111945, 46, 63919, 24)

State 3 corresponds to an individual with good immune control over the virus while state 4 represents an individual in unhealthy state whose
viral load is considerably elevated and T-cells are in short-supply in absence of treatment.

Analyze stability of fixed points

To analyze the stability of fixed points, we compute the eigenvalues of Jacobian matrix given by

ds
dt
[—d, — Kk, V 0 0 0 -k Ty 0 |
0 —dy, — kyV 0 0 ko T, 0
J le 0 -6 — mlE 0 lel —I’}’llTl>k
- 0 ko V 0 ~6—mE ko T —my Ty
—pr1k1V —p2kaV oNT oNt —c—prkiTy — prko T 0
0 0 J63 Jou4 0 Joo |
b KbE deK,E
J6,3 = J6,4 = . * s * * 2
T +T7 + K2 (Ip + 15 + Ky)
bg dg

Jeo = - T*+T;)—06
0,6 (Tl* + Tz* + Kb Tl* + Tz* + Kd)(1 2) E

In [1775]:

np.set printoptions(suppress=True)
def jacob(x):
[t1l,t2,t11,t21,v,e] = X

a63 = bE * Kb*e/ (t1ll + t21 + Kb)**2 - d E * Kd*e / (t1ll + t21 + Kd)**2
a64 = bE * Kb*e/ (tll + t21 + Kb)**2 - d_E * Kd*e / (t1ll + t21 + Kd)**2
a66 = (bE/(t1l+t21+Kb) - d E/(t11+t21+Kd))*(t11+t21) - deltaE

J = [[-dl-kl*v, O, O, O, -k1*tl, O],
[0,-d2-k2*v, 0, 0, -k2*t2, 0],
[k1*v,0, -delta-ml*e, O, k1*tl, -ml*tll],
[0,k2*v, O, -delta-m2*e, k2*t2, -m2*t21],
[-rhol*kl*v, -rho2*k2*v, delta*NT,delta*NT , -c-rhol*kl*tl-rho2*k2*t2, 0],
[0,0,a63,a63,0,a66]
|

return J

for i in range(x_final.shape[0]):

max_eigenval = np.linalg.eigvals(jacob(x final[i,:]))

max2 = np.argsort(max_eigenval)

eigenl,eigen2 = max_eigenval[max2[-2:]][::-1]

if eigenl.real < 0:
if eigenl.imag > 0:
print("Point {} is stable with spiral focus".format(x finall[i,:1))
else:
print("Point {} is stable".format(x finalli,:1))
else:
if eigenl.imag > 0:
print("Point {} is unstable with spiral focus".format(x_ final[i,:]))
else:
if eigen2.real<0:
print("Point {} is unstable with saddle point".format(x finall[i,:]))
else:
print("Point {} is unstable".format(x finalli,:1))

Point [163573. 5. 11945. 46. 63919. 24.] is stable with spiral focus

Point [664938. 50. 1207. 11. 6299. 207658.] is unstable with saddle point

Point [967839. 621. 76. 6. 415. 353108.] is stable with spiral focus

Point [1000000. 3198. 0. 0. 0. 10.] is unstable with saddle point

Exercise 1.3(5 points) Write the necessary functions to simulate a continuous time model for HIV infection considering patients with different
immunities.

Step 1

We define a class for our simulator (HIVSimulator) which initializes the parameters for individual's immunity. We also initialize the action
parameters (€], €;) and the function for reseting the initial state of the simulator. Also, we include an option to randomize the initial state
using slight perturbations

In [1776]: class HIVSimulator():
def init (self, immunity type):
immunity of the individual
if immunity type == 'strong':
self.params = (1le4,31.98,0.01,0.01,8e-7,1e-4,0.7,100.,13.,1.0,1.0,0.1,100.0,1e-5,1e-5,0.5,50€¢
else:
self.params = (1le4,31.98,0.01,0.01,8e-7,1e-4,0.7,100.,13.,1.0,1.0,0.1,1.0,1e-5,1e-5,0.3,100,¢

self.state = []

def simulate(self,epsl,eps2,t,derivs):
deriv_args = (epsl,eps2,0.34,self.params)
#solving the ode using odeint
sol = odeint(derivs, self.state, t, args=deriv_args)
return sol

def reset(self, state type, randomize):
"""Reset the environment."""

self.t =0
if state type == 'low':
self.state = [1000000., 3198., 0., 0., 1., 10.]
elif state type == 'high':
self.state = [163573., 5., 11945., 46., 63919., 24.]
elif state type == 'early':

self.state = [1000000., 3198., le-4, le-4, 1., 10.]
if randomize:

self.state = self.state + (self.state * np.random.uniform(-0.1,0.1,6))
return self.state

Step 2

Define the visualizer for plotting the simulation output (cell counts and viral counts)

In [1777]: def visualize plot(t,data dict,plot phase=True):
if plot phase:
f, ((ax1l, ax2), (ax3, ax4), (ax5,ax6), (ax7,ax8)) = plt.subplots(4, 2, figsize=(15,15))
else:
f, ((ax1l, ax2), (ax3, ax4), (ax5,ax6)) = plt.subplots(3, 2, figsize=(15,10))
axs = [ax1l,ax2,ax3,ax4,ax5,ax6]
ylabels = ['T1','T2"','T1*", 'T2*"','V', 'E"']
for k,data in data dict.items():
for i in range(6):
axs[i].plot(t,data[:,i],label = k)
axs[i].set yscale('log"')
axs[i].set xlabel('t')
axs[i].set ylabel(ylabels[i])
axs[i].legend(loc="upper right")

if plot phase:
ax7.plot(datal:,4],data[:,5])
ax7.set _yscale('log')
ax7.set_xscale('log")
ax7.set _title('Phase Plot (E vs V)')
ax7.set xlabel('V")
ax7.set _ylabel('E")
ax7.set_label(k)

ax8.plot(datal[:,0],data[:,1])

ax8.set yscale('log')

ax8.set xscale('log')

ax8.set title('Phase Plot (T2 vs T1)')
ax8.set xlabel('T1l")

ax8.set ylabel('T2")

ax8.set label(k)

Step 3

We simulate our model and verify whether it reaches the physical equilibria highlighted above. To initiate the simulation, we consider an
individual in healthy state and introduce 1 viral copy per ml (V = 1c/ml), this is defined by state type low in reset_() function.

In [1778]:

Individual with standard immune system

Infect a healthy individual with low viral count and observe the dynamics over t=200 days. Here we assume that no drug is being
administered to the patient (¢, €, = 0) and the patient has a immune system characterized by standard parameters

(ﬂE, mp,mjp, bE, Kb’ dE, Kd) = (10, 16—5, 16—5, 03, 100, 025, 500)

h = HIVSimulator('standard')
h.reset('low',True)

dt =1

max_time = 200

epsl, eps2 = 0,0

t = list(range(0,max_time,dt))

sol = h.simulate(epsl,eps2,t,derivs_dt)
sol dict ={'standard':sol}

#visualize the state variables dynamics
visualize plot(t,sol dict)
#print the final state

print("Equilibria State (T1,T2,T1*,T2*,V,E) =", np.round(sol[-1,:]))
Equilibria State (T1,T2,T1*,T2*,V,E) = [163086. 5. 11889. 46. 63631. 24.1]
107 —— standard 1 —— standard
1'}3 e
107 4
F 107 F 10 4
1'}') -
T T T T T T T T T lu_l - T T T T T T T T T
H] 25 100 125 150 175 200 o 25 50 75 100 125 150 175 200
t t
—— standard —— standard
10° 4 10° 4
10°
107 4
B p
107 4 10 4
10*
ll}-:l B
10: k T T T T T T T T T T T T T T T T T
] 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
t t
—— standard —— standard
10° 4 4x10*
10° o
Ix10*
10° 4
7 107 “oax1m
107 4
10* A
10° 10"
] 25 50 5 100 125 150 175 200 o 25 50 75 100 125 150 175 200
Phase Plat (E vs V) Phase Plott(T2 vs T1)
43100 10° 4
3w 10t
107 4
w &
2x100 100 4
107 4
101 B
T T T T T T T 10-1 E T T
10?7 1t 107 10° 10¢ 10° 108 10 10°

In [1780]:

Individual with stronger immune system

Now, we consider an individual with stronger immune system (higher T-cell birth rates and saturation constant) Infect the individual with low
viral count and observe the dynamics over t = 500 days. Here we assume that no drug is being administered to the patient (€1, €; = 0)

Immune effector parameters (Ag, my, my, bg, Ky, dg, K;) = (100.0, le™>, 1e7>, 0.6, 500, 0.25, 500)

h = HIVSimulator('strong')
h.reset('low',True)

dt =1

max_time = 500

epsl, eps2 = 0,0

t = list(range(0,max_time,dt))

sol = h.simulate(epsl,eps2,t,derivs _dt)

#visualize the state variables dynamics

visualize plot(t,{'strong':sol})

#print the final state

print("Equilibria State (T1,T2,T1*,T2*,V,E) = ", np.round(sol[-1,:]))

Equilibria State (T1,T2,T1*,T2*,V,E) = [917828. 277. 242. 9. 1280. 323822.]
10° 4 4 —— strong —— strong
10° §
107 4
ﬁ 10° 1 p 10 4
10’) e
T T T T T T 10-1 A T T T T T T
] 100 200 300 400 500 o 100 200 300 400 500
t t
—— stron —— stron
10° 4 g 10° 4 E
10° 3
107 5
® 103 1 ®
p 10 P
10° 4 100 4
100 o
107 §
luo b T T T T T T T T T T
] 100 200 300 400 500 o 100 200 300 400 500
t t
107 4 — strong —— strong
105 -
10° §
10° 4 10% §
= W
10° 4 10% 4
107 4
107 4
10% o
luo 3 T T T T T T 101 3 T T T T T T
] 100 200 300 400 500 o 100 200 300 400 500
Phase Plat (E wvs V) Phase Plott(T2 vs T1)
107 o 10° 1
10° § 10° 4
"].l]I3 E E 101 E
107 o 100 4
1D1 3 T T T T T T T 10_1 B T T
10° 101 107 10% 10¢ 10 10° 10° 100

As observed, in both cases, the unstable steady state (healthy individual) transitions to stable steady state. The steady state for an individual

In [1783]:

with stronger immune system is much closer to fixed state 4 (described earlier) and his body is able to maintain a lower viral count without
any treatment. Individual with standard immmune system transitions from healthy fixed state(1) to unhealthy fixed state(3) with high viral load
and depleted immunity cells. Also, as evident from the phase plots, the stable fixed points exhibit a spiral behaviour.

Exercise 1.4(5 points) Simulate the effect of different drug combinations using different values for RT inhibitor and PT inhibitor efficacies (
€1,€2)

As suggested by Adams et al., we consider 4 drug combinations: (€1, €5) = (0,0);(0.3,0.7);(0.7,0.3);(0.7,0.7)

h = HIVSimulator('standard')
h.reset('high',True)
dt =1
max_time = 500
eps = [[0,0],[0.3,0.7],[0.7,0.31,[0.7,0.7]]
sols = {}
t = list(range(0,max_time,dt))
for epsl,eps2 in eps:
label = '{};{}'.format(epsl,eps2)
if epsl > 0:
h.reset('high',True)
else:
h.reset('low', True)
sols[label] = np.round(h.simulate(epsl,eps2,t,derivs dt),3)

t = list(range(0,max_time,dt))
visualize plot(t,sols,False)

10° 4 — 00
0.3;0.7 10° 5
— 07:03
— 07:07 10° |
=] =
107 100 +
10° |
T T T T T T 10-1 E T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
100 t t
0 — 00
. 0.3:0.7 A 0307
077 07:0.3 101 o — 0703
07:0.7 — 0707
. 17
= Fo100
10’) B
-2
1072 - 10
T T T T T
500 200 300 400 500
t
10° 1 00
03:0.7 107 |
10 | 07:0.3
0.7:0.7
= 107 4 i
ID':I 4
10_2 B
101 B
T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
t t

The simulation shows that treatment using high dosage of both drugs leads to much lower steady state viral load and healthy CD4 and
macrophages count. Now we analyze the effect of varying RTI and Pl inhibitors individually.

Evaluate effect of varying the RT inhibitor treatment efficacy (¢1)

We vary the RT/P inhibitor parameter value from 0 to 1 individually and observe the final viral load at equilibria. Our initial state is now an
individual with high initial viral load state (steady state 4 equilibria highligted above). We do not include the effect of other drug while varying a
particular drug.

In [1784]: h = HIVSimulator('standard')

efficacy = np.linspace(0,1,100)

viral load rt = []

viral load pt = []

max_time = 1000

dt =1

t = list(range(0,max_time,dt))

for i in efficacy:
h.reset('high',True)
sol = h.simulate(i,0,t,derivs_dt)
viral load rt.append(np.round(sol[-1,4]))
h.reset('high',True)
sol = h.simulate(0,1i,t,derivs _dt)
viral load pt.append(np.round(sol[-1,4]1))

fig, ax = plt.subplots(1,1)
plt.plot(efficacy,np.array(viral load rt), label='RTI')
plt.plot(efficacy,np.array(viral load pt), label='PI')
plt.yscale('log', basey=10)
plt.yticks([100,1000,10000,100000])

plt.ylabel("Viral Count")

plt.xlabel("Drug efficacy parameter $\epsilon 1/\epsilon 2$")
plt.legend(loc="upper right")

plt.show()

/home/achoudhary/anaconda3/lib/python3.7/site-packages/scipy/integrate/odepack.py:248: ODEintWarning: Ex
cess work done on this call (perhaps wrong Dfun type). Run with full output = 1 to get quantitative info
rmation.

warnings.warn(warning msg, ODEintWarning)

10°
— RTI
Pl
10¢
E
=
Q
[
™
= 3
£ 10 |
L
10 4\
0.0 0z 04 06 0& 10

Drug efficacy parameter £1/52

Increasing the drug efficacy beyond 0.8 leads to sudden drop in viral count. In case of PlI, the viral count falls below the clinically detectable
level of 43. Hence, now we focus on optimal drug dosage strategy with maximal range decided basis the computed curve above.

3.2 Determining ideal drug dosage for patient infected with high viral load

We saw that drug combination helps reduce and maintain viral load. However, their long term use can lead to complications and patients
often experience side-effects which leads to poor compliance. Hence, we consider two drug scheduling strategies which essentially tries to
vary drug efficacies (€) over time and maximize a reward function(objective). We assume that we control dosage by controlling the efficacy
parameter. The most common cost function used in various studies is:

J(e1,€) = E[QV(t) + R €2 + Rye2 — SE®)]
where Q, R1, R2 and S are weight constants for the virus, controls inputs, and immune effectors, respectively. V and E are viral load and

immune effector cell population. The objective is to mimimize the cost function, i.e. minimize the systemic costs of drug treatment and viral
load while encouraging higher immunity cells population.

Optimal Control

Exercise 1.5(10 points) Develop a drug dosage control algorithm using Optimal Control method.

Using the control model proposed by Adams et. al.[1] we determine the optimal dosage strategy. We attempt to control HIV populations in
finite time intervals using a control function €(¢) which represents the drug efficacy satisfying 0 <= a <= e(t) <= b < 1. Here ¢(t) = b
represents maximum efficacy. We use the forward and backward integration along with optimal control parameter equation. We consider a
patient with low viral load as considered by Adams et. al.[1] and only consider the scenario wherein RTI is administered i.e. we keep PI
dosage to be zero (€5 = 0) & consider the simpler cost function used by Adams et. al. [1]:

J(e1,€2) = E[QV (1) + Ryef]

Step 1

We simulate the process on forward directions using our earlier simulation model and assuming a random value for € to begin with. Using
the final state at t=200, we introduce adjoint variables and perform backward integration to reach t = 0 and determine the ideal control
parameter for this iteration. We keep iterating until the control parameter value stabilizes.

Writing the equations for backward integration

In [1785]: def derivs dt inv(s,t,state 1,Q,epsl=0,eps2=0,f=0.34,params=None):
el,e2,e3,e4,e5,e6 = s
t1l,t2,t11,t21,v,e = state 1
if params is None:

lambdal = le4

lambda2 = 31.98

dl = 0.01

d2 = 0.01

f=f

kl = 8e-7

k2 = le-4

delta = .7

NT = 100

c =13

rhol =1

rho2 = 1.

deltakE = 0.1

lambdaE = 1

ml = le-5

m2 = le-5

bE = 0.3

Kb = 100

d E=0.25

Kd = 500
else:

lambdal, lambda2,d1,d2,kl,k2,delta,NT,c,rhol, rho2,deltaE, lambdaE,ml,m2,bE,Kb,d E,Kd = params

ds _inv = s.copy()
tmpl = bE*e*Kb/(t1ll+t21+Kb)**2 - d E*e*Kd/(t1ll+t21+Kb)**2
tmp2 = e5*NT*delta + e6*tmpl

ds _inv[0] = -(el*(-dl - (l-epsl)*kl*v) + e3*(l-epsl)*kl*v -e5*(1l-epsl)*rhol*kl*v)
ds inv[1l] = -(e2*(-d2 - (1-f*epsl)*k2*v) + ed*(1l-f*epsl)*k2*v -e5*(1-f*epsl)*rho2*k2*v)
ds inv[2] = -(e3*(-delta - ml*e) + tmp2)
ds_inv[3] = -(ed4*(-delta - m2*e) + tmp2)
ds inv[4] = -(Q - el*(l-epsl)*kl*tl + e2*(1 - f*epsl)*k2*t2 + e3*(1 - epsl)*kl*tl + \
e4*(1 - f*epsl)*k2*t2 + e5*(-c - (1 - epsl)*rhol*kl*tl - (1 - f*epsl)*rho2*k2*t2))
ds_inv[5] = -(-e3*ml1*t1ll -e4*m2*t21 + e6*(bE*(t1l+t21)/(t11+t21+Kb) - d E*(t11+t21)/(t1l+t21+Kd) - de

return ds_inv

Solving the HIV model to determine optimal control parameter

In this case, we update our simulator class to include the forward and backward state variable and customize the simulation function to
account for both forward and backward cases. The €1 parameter is constrained to be between 0 and 0.8.

In [1797]: class HIVSimulator():
def init (self, immunity type):
immunity of the individual
if immunity type == 'strong':
self.params = (le4,31.98,0.01,0.01,8e-7,1e-4,0.7,100.,13.,1.0,1.0,0.1,100.0,1e-5,1e-5,0.5,50¢
else:
self.params = (1le4,31.98,0.01,0.01,8e-7,1e-4,0.7,100.,13.,1.0,1.0,0.1,1.0,1e-5,1e-5,0.3,100,¢

self.f state

[]
self.b_state [1]

def simulate(self,epsl,eps2,t,derivs,Q=None,state=None, backward=False):
if backward:
deriv_args = (state,Q,epsl,eps2,0.34,self.params)
s = self.b state
else:
deriv_args = (epsl,eps2,0.34,self.params)
s = self.f state
#solving the ode using odeint
sol = odeint(derivs, s, t, args=deriv_args)
return sol

def reset(self, state type, randomize):
"""Reset the environment."""

self.t =0
if state type == 'low':
self.f state = [1000000., 3198., 0., 0., 1., 10.]
elif state type == 'high':
self.f state = [163573., 5., 11945., 46., 63919., 24.]
elif state type == 'early':

self.f state = [1000000., 3198., le-4, le-4, 1., 10.]
if randomize:

self.f state = self.f state + (self.f state * np.random.uniform(-0.1,0.1,6))
return self.f state

In [1846]:

In [1847]:

#solving the HIV equations

a=20.0

b=20.8

R = 10000

h = HIVSimulator('standard"')
t = list(range(0,200))

t inv = t[::-1]

error = 1000
eps_init = np.random.uniform(a,b) * np.ones(len(t))

obj_init
obj best

1e20
float("Inf")

counter = 0
while counter < 400:

f states = np.zeros((len(t)+1,6))

f states[0] = init_state

h.reset('low',False)

for t it in t:
f states[t it+l] = h.simulate(eps_init[t it],0,[t it,t it+1],derivs dt)[-1,:]
h.f state = f states[t it+1]

v = f states[1:,4]

tl f states[1:,0]

t2 f states[1:,1]

obj new = np.sum(Q*v+R*eps init**2)

if obj new < obj best and counter>5:
eps _best = eps_init.copy()
v_best = v.copy()

error = abs(obj new - obj init)/obj init

r states = np.zeros((len(t)+1,6))

for t it in t inv:
h.b state = r states[t it+1]
r states[t it] = h.simulate(eps init[t it],0,[t it+1l,t it],derivs dt inv,Q,list(f states[t it+1])
h.r state = r states[t it]

el = r_states[:-1,0]
e2 = r_states[:-1,1]
e3 = r_states[:-1,2]
e4 = r _states[:-1,3]
e5 = r_states[:-1,4]
e6 = r_states[:-1,5]

eps_new = np.maximum(a, np.minimum(b, (-(el-e3+rhol*e5)*kl*v*tl - (e2-ed+rho2*e5)*f*k2*v*t2)/(2*R)))
error = np.linalg.norm(eps new - eps init)/np.linalg.norm(eps_init)

eps_init = eps_new.copy()

obj init = obj new

counter+= 1

patient with epsilonl = 0.8 (strong drug efficacy)
max_time = 200

dt

1

h.reset('early', False)
t = list(range(0,max_time,dt))
full eps = h.simulate(0.8,0,t,derivs _dt)

patient with no drug being given
h.reset('early', False)
no_eps = h.simulate(0,0,t,derivs dt)

Compare viral load for optimal control parameter with ¢; = Qand ¢; = 0.8

In [1848]:

plt.title("Drug Control Parameter")
plt.plot(eps _init)
plt.ylabel('$\epsilon 1$")
plt.show()

plt.plot(f states[:,4], label
plt.plot(full eps[:,4], label
plt.plot(no_eps[:,4], label =
plt.legend(loc="upper right")
plt.title("Viral Load")
plt.yscale('log', basey=10)

'Optimal Control Parameter')
'Drug efficacy 0.8"')
No Drug')

Drug Control Parameter

0.8 1 |—|

0.7 4

0.6 1
0.5 4

0.4 4

£1

0.3 4

0.2 4

01 4

0.0 1 —
T T T T T
o 25 50 75 100 125 150 175 200

Viral Load

—— Optimal Control Parametear
Drug efficacy 0.8

10° §

1|}5 E

10¢ §

1|}3 E

10° 4

10 4

107 4

T T T T T
o 5 50 75 100 125 150 175 200

As observed, the optimal control model tries to control the drug dosage for RTI (plot 1) and is able to minimize the viral load below 'no drug'
scenario to certain extent. However, the viral load still jumps to quite high levels intermittently and thus, we focus on reinforcement learning-
based optimization.

Reinforcement Learning
Exercise 1.6(10 point) Develop a drug dosage control algorithm using Reinforcement Learning(RL).

To simulate this scenario, we use our simulation model to generate trajectories for RL model. Then, we train a Policy Gradient based
Reinforcement Learnina model usina batch data without access to the underlvina simulation model to determine the ootimal drua dosaae for

RTI and PI, both. In line with Adams et. al.[2], we consider 4 possible actions:
1. Action 0: no drug, costs 0 (€] =0, €3 =0)
2. Action 1: protease inhibitor only (€1 =0, €, =0.3)
3. Action 2: RT inhibitor only, (€1 = 0.7, €; = 0.0)
4. Action 3: both RT inhibitor and protease inhibitor, c(€; = 0.7, €, = 0.3)

The reward at each step is defined based on the current state and the action. In this case, we use the full cost function:
J(€1,€) = E[QV(1) + Ry} + Rye? — SE(1)]

Here we use the following parameters in our objective:R1 =20000 , R2 = 2000, Q=0.1, S=1000

Define Simulator for RL

We define our class to perform simulation. This is an updated version of our HIVSimulator class defined earlier

In [1823]: class HIVRL(object):
Stateinames = (IITlII’ IIT2II’ IITl*II' IIT2*II’ IIVII' IIEII)
eps_values for_actions = np.array([[0., 0.1, [.7, 0.1, [0., .31, [.7, .311)

def init (self,dt=1, derivs=None):
self.statespace limits = np.array([[0., 1e8]] * 6)
self.model derivatives = dsdt
self.dt = dt
self.state = []
self.reward bound = 1e300
self.num_actions = 4
self.reset('high', False)

def reset(self, state type, randomize=False):
"""Reset the environment."""

self.t =0
if state type == 'low':
self.state = [1000000., 3198., 0., 0., 1., 10.]
elif state type == 'high':
self.state = [163573., 5., 11945., 46., 63919., 24.]
elif state type == 'early':

self.state = [1000000., 3198., le-4, le-4, 1., 10.]
if randomize:

self.state = self.f state + (self.f state * np.random.uniform(-0.1,0.1,6))
self.state = np.array(self.state)
return self.state

def observe(self):
return self.state

def is done(self, episode length=200):
##Check 1if the episode is complete
return True if self.t >= episode length else False

def calc reward(self, action=0, state=None, **kw):
#define the reward function
epsl, eps2 = self.eps values for actions[action]
if state is None:
state = self.observe()
T1, T2, Tl1ls, T2s, V, E = state

reward = -0.1*%V - 2ed*epsl**2 - 2e3*eps2**2 + 1e3*E

Constrain reward to be within specified range
if np.isnan(reward):
reward = -self.reward bound
elif reward > self.reward bound:
reward = self.reward bound
elif reward < -self.reward bound:
reward = -self.reward bound
return reward

def step(self, action):
self.t += 1
self.action = action
epsl, eps2 = self.eps values for actions[action]
r = ode(self.model derivatives).set integrator('vode',nsteps=10000,method="bdf")
t0 =0
deriv_args = (epsl, eps2)
r.set initial value(self.state, t0).set f params(deriv_args)
self.state = r.integrate(self.dt)
reward = self.calc_reward(action=action)
done = self.is done()
return self.state, reward, done

def dsdt(t, s, params):
derivs = np.empty like(s)
epsl,eps2 = params
T1, T2, Tls, T2s, V, E = s

baseline model parameter constants
lambdal = le4
lambda2 31.98

dl = 0.01
d2 = 0.01
f= .34

kl = 8e-7

k2 = le-4
delta = .7
ml = le-5

m2 = le-5
NT = 100.

c = 13.

rhol = 1.
rho2 = 1.
lambdaE = 1.
bE = 0.3

Kb = 100.

d E=0.25
Kd = 500.
deltaE = 0.1

out = s.copy()

compute derivatives
tmpl = (1. - epsl) * k1 * V * T1
tmp2 = (1. - f * epsl) * k2 * V * T2

out[0] = lambdal - d1 * T1 - tmpl

out[1l] = lambda2 - d2 * T2 - tmp2

out[2] = tmpl - delta * Tls - ml * E * Tls

out[3] = tmp2 - delta * T2s - m2 * E * T2s

out[4] = (1. - eps2) * NT * delta * (Tls + T2s) - ¢ * V - ((1. - epsl) * rhol * k1 * T1 + (1. -
out[5] = lambdaE + bE * (Tls + T2s) / (Tls + T2s + Kb) * E - d E * (Tls + T2s) / (Tls + T2s + K
return out

Policy Gradient-based RL

For a given state s, a policy can be written as a probability distribution g (s, a) over actions a, where 8 is the parameter of the policy.
The reinforcement learning objective is to learn a 8 that maximizes the objective function
J(0) = Evopy[r(D)],
where 7 is the trajectory sampled according to policy 7y and (7) is the sum of discounted rewards on trajectory 7.
The policy gradient approach is to take the gradient of this objective
VoJ(0) = Vg [mg(0)r(v)dr = [75(2)Vg log mp(t)r(1)dT = Eqmry)[Vo log 7 (2)r(z)]

We sample trajectories /) = {sg), ag), s(li), a(li), ---} ~ mp(7) and compute the gradient (w.r.t.) of loss function

Loss = —% Zi[ZtT:o log mp(a?” | sy 0V1.

Define policy and episode generation functions

f*e
d) * E

We refer one simulation trajectory as an episode. For reinforcement learning, in each iteration, we generate 10 trajectories using the action

proposed by our policy agent. We use a one-layer perceptron network as our policy agent and use epsilon-greedy framework for taking

actions using our policy i.e. select action recommended by trained policy agent with certain probability, otherwise select action randomly.

In [1831]:

import matplotlib.pylab as plt
import numpy as np

import torch

import torch.nn as nn

import torch.optim as optim

class PolicyGradient(nn.Module):
def init (self, outputs):
super(PolicyGradient, self). init ()
self.network = nn.Sequential(
nn.BatchNormld(num_features=6, affine=False),
nn.Linear(6,10),
nn.RelLU(),
nn.Linear (10, outputs))

def forward(self, x):
x=x.double()
X = self.network(x)
return x

def sample episode(env, policy, max _episode length,epsilon):
ob = env.reset('high')
obs, acs, log p, rewards, next obs, terminals = [], [1, [1, [1, [1, [1]
steps = 0
while True:
use the most recent observation
obs.append(ob)
ac = sample_action(policy, ob, epsilon)
acs.append(ac)
take that action and record results
ob, rew, done = env.step(ac)
record result of taking that action
steps += 1
next obs.append(ob)
rewards.append(rew)
if done or steps > max_episode length:
rollout done =1
else:
rollout done = 0
terminals.append(rollout done)
if rollout done:
break
return obs, acs, rewards, next_obs, terminals

def sample action(policy net, obs, epsilon):
if np.random.random() < epsilon:
return np.random.randint(4)
obs = torch.tensor(obs.reshape(l, -1), dtype=torch.float64)
return (

torch.distributions.Categorical(logits=policy net.eval().double().forward(obs))

.sample()
.item()

)

def sample batch episodes(env, policy, episodes per batch, max episode length,epsilon):
episode count = 0
episodes = []
for i in range(episodes per batch):
episode = sample episode(env, policy, max episode length,epsilon)
episodes.append(episode)
return episodes

def log prob(policy net,obs, action):
log probs = nn.functional.log softmax(policy net.forward(obs), dim=1)[:,]
action_one hot = nn.functional.one hot(action, num classes=4)
return torch.sum(log _probs * action_one_hot, dim=1)

def reward discounted(gamma,rewards):
all discounted cumsums = []
for loop over steps (t) of the given rollout
for start time index in range(len(rewards)):
indices = np.arange(start time index, len(rewards))
discounts = gamma ** (indices - start time index)

all discounted cumsums.append(sum(discounts * rewards[start time index:]))
return np.array(all _discounted cumsums)

Learn RL-based treatment policy by simulating the model and applying policy gradient-based updates for 200 iterations

In [1: n_iter = 200
batch size = 10
max_episode length = 100
epsilon = 1.0
GAMMA = 0.999
learning_rate = le-3

policy net = PolicyGradient(4).double()

avg_rewards = np.zeros(n_iter)

avg_episode lengths = np.zeros(n_iter)

env = HIVRL()

log _loss = np.zeros(n_iter)

optimizer = optim.Adam(policy net.parameters(), lr=learning rate)
policy net.train()

for itr in range(n_iter):
if itr % 10 == 0:
print(f"*****ITteration {itr}****x*x")
episodes = sample batch episodes(env, policy net, batch size, max episode length,epsilon)
total_reward = 0
obs = np.concatenate([tau[0] for tau in episodes], axis=0).astype(np.float64)

acs = np.concatenate([tau[l] for tau in episodes], axis=0).astype(np.int64)
obs = torch.from _numpy(obs)
acs = torch.from_numpy(acs)

disc_rewards = []
for e in episodes:
total reward += np.sum(e[2])

disc_rewards = np.concatenate([reward discounted(GAMMA,tau[2]) for tau in episodes], axis=0).astype(r
log ps = log prob(policy net,obs,acs)

avg_reward = total reward/batch size

advantage = (disc_rewards - disc_rewards.mean())/disc_rewards.std() + le-8 #np.standardize(disc rewar
loss = -torch.mean(log ps * torch.tensor(advantage, dtype=torch.float64))
print(loss.item(),avg reward)

avg _rewards[itr] = avg_reward

Update network weights

optimizer.zero grad()

loss.backward()

optimizer.step()

log loss[itr] = loss.item()

Update rule for epsilon s.t. after 100 iterations it's around 0.05.
epsilon = np.maximum(0.05,epsilon*0.97)

Plotting the reward and loss curves

In [1834]:

fig,
ax1l.
ax1l.
ax1l.
axl
ax2
ax2.
ax2.
ax2.
plt.

6300000 4

6000000 4

average total reward

4000000 A

3500000 4

training loss

5500000 4

5000000 4

4500000 4

(ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=[9, 9])

plot(avg rewards)
set xlabel("number of iterations")
set _ylabel("average total reward")

.set_ylim(avg rewards.min(), avg rewards.max())
.plot(log loss)

set xlabel("number of iterations")
set_ylabel("training loss")

set ylim(log loss.min(), log loss.max())
show()

T N N T
number of iterations

020 A

015 1

010 A

0.05 A

0.00 A

—0.05

0 s 50 75 100 125 150
number of iterations

Plot the state space dynamics and drug dosages across time

175

200

In [1842]: max_time = 200
dt = 1
episode = sample episode(env, policy net, max_time, 0)
obs = np.array(episode[0])[:max_time]

patient with high drug dosage

h.reset('high',False)
t = list(range(0,max_time,dt))
full eps = h.simulate(0.7,0.3,t,derivs dt)

patient with no drug being given
h.reset('early', False)
no_eps = h.simulate(0,0,t,derivs dt)

sols = {'RL':0bs, 'High dosage throughout':full eps, 'No dosage':no_eps}
visualize plot(t,sols,False)

#plotting the dosage strategy
epsl = []
eps2 = []
for i in episode[1][:max_time]:
if i in [1,3]:
epsl.append(0.7)
else:
epsl.append(0.0)
if i in [2,3]:
eps2.append(0.3)
else:
eps2.append(0.0)

fig, (ax1l, ax2) = plt.subplots(2, 1, sharex=True, figsize=[9, 9])
axl.plot(epsl)

axl.set xlabel("time")

axl.set ylabel("$\epsilon 1$")

axl.set title("RTI Dosage")

ax2.plot(eps2)

ax2.set xlabel("time")

ax2.set_ylabel("$\epsilon 2$")

ax2.set title("PI Dosage")

plt.show()

T1*

£1

]

10° 1

—— RL — RL
—— High dosage throughout 10° 5 1 —— High dosage throughout
——— Mo dosage —— No dosage
10° 4
s
10° 100 [M
107 4
T T T T T T T T T 10-1 A T T T T T T T T T
o 25 50 75 100 125 150 175 200 25 100 125 150 175 200
t t
10° 4 — RL 10° —— RL
——— High dosage throughout —— High dosage throughout
2 J —— Mo dosage —— Nodosage
10 n 10"
1 £l
10 M
10—1 B
1,0—1 B
1072 1 107%
T T T T T T T T T T T T T T T T T T
o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
t t
RL — AL
High dosage throughout 107 —— High dosage throughout
10° 1 Mo dosage —— Mo dosage
"
10° 1 w \/
101 B
10! 4
T T T T T T T T T T T T T T T T T T
o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
t t
RTI Dosage
07 4 1
1 —‘ 1
06
05 A
04
03 A
02 A
01 A
00 4 - H
T T T T t||-|-||e T T T T
Pl Dosage
0.30 4 I '—l] m |-
025 A
020 1
015 4
010 1
005 1
000 + - o
0 5 50 75 100 125 150 175 200

time

As observed, the reinforcement learning-based model is able to optimize the dosage for both RTI and Pl and is able to consistently keep the
viral load below the 'no drug scenario' and close to the 'full drug' scenario. CD4 cells count is also mainted quite well using RL-based
treatment policy. The model tries to keep RTI and Pl dosages to minimal and tries to minimize viral load taking help from the immune system
cells(E).

References

1. Adams, Brian Michael, et al. "HIV dynamics: modeling, data analysis, and optimal treatment protocols." Journal of Computational and
Applied Mathematics 184.1 (2005): 10-49.

2. Adams, Brian Michael, et al. Dynamic multidrug therapies for HIV: Optimal and STI control approaches. North Carolina State University.
Center for Research in Scientific Computation, 2004.

Division of Labor

1. Farshad Rafiei: Cellular Automata (Part 1)
2. Aslihan Celik: ODE implementation (Part 2)
3. Anirudh Choudhary: ODE and Reinforcement Learning (Part 3)

Literature review was divided equally between the members of the group and each person contributed a part of literature
review which is relevant to their coding section.

References

[1] Graw F, Perelson AS (2013) Spatial Aspects of HIV Infection. Mathematical Methods and Models in Biomedicine:
Springer. pp. 3-31.

[2] Perelson, A. S., & Ribeiro, R. M. (2013). Modeling the within-host dynamics of HIV infection. BMC biology, 11(1), 96.

[3] Di Mascio, M., Ribeiro, R. M., Markowitz, M., Ho, D. D., & Perelson, A. S. (2004). Modeling the longterm control of viremia
in HIV-1 infected patients treated with antiretroviral therapy. Mathematical biosciences, 188(1-2), 47-62.

[4] Ernst, D., Stan, G. B., Goncalves, J., & Wehenkel, L. (2006, December). Clinical data based optimal STl strategies for
HIV: a reinforcement learning approach. In Proceedings of the 45th IEEE Conference on Decision and Control (pp. 667-672).
IEEE.

[5] Adams, Brian Michael, et al. "HIV dynamics: modeling, data analysis, and optimal treatment protocols." Journal of
Computational and Applied Mathematics 184.1 (2005): 10-49.

[6] Bitmead, R., Gevers, M., & Werts, V. “Adaptive Optimal Control: The Thinking Man’s GPC.” Prentice Hall International
(1990)

[71 S. Parbhoo, J. Bogojeska, M. Zazzi, V. Roth, and F. Doshi-Velez,“Combining kernel and model based learning for hiv
therapy selection,”AMIA Summits on Translational Science Proceedings, vol. 2017, p.239, 2017.

[8] S. Parbhoo, “A reinforcement learning design for hiv clinical trials,”Ph.D. dissertation, 2014.

[9] D .Wodarz, M .A .Nowak, “Specific therapy regimes could lead to long-term immunological control of HIV”, Proc .Natl
Acad .Sci .96 (1999) 14464—14469.

[10] S .Bonhoeffer, M .Rembiszewski, G .M .Ortiz, D .F .Nixon, “Risks and benefits of structured antiretroviral drug therapy
interruptions in HIV-1 infection”, AIDS 14 (2000) 2313-2322.

