
Evaluating heuristic and local search-based
approaches for Traveling Salesman Problem

Project Report

Leonardo Camacho A.
Georgia Tech

leca6@gatech.edu

Anirudh Choudhary
Georgia Tech

achoudhary46@gatech.edu

Aditya Vadhavkar
Georgia Tech

avadhavkar3@gatech.edu

Abstract
NP problems are constantly being evaluated using
different approximations techniques and redesign-
ing the problem based on accuracy and run-time.
Therefore, five different approaches to TSP, which
is an NP problem, are implemented. The methods
were chosen based on their proven accuracy, lower-
bound ratio, computational run-time, and latest im-
provements and implementations. The five meth-
ods being compared are a Branch-and-Bound exact
solution, a Heuristic construction model, and three
local search approximations, which are compared
through tables and graphs showing accuracy and
running time expense of the algorithms. Having
done so, in terms of run-time and accuracy, an
improved version of Simulated Annealing (LBSA)
was the best approach for the TSP problem.

Keywords
NP problems, 2-Opt, MST Approximation, Local Search,
Branch-and-Bound, Simulated Annealing

1 INTRODUCTION
The Traveling Salesman Problem (TSP) is one of
the most studied NP problems due to its flexibility
to model different problems present in multiple
fields of study ranging from aerospace to genetic
engineering. Informally, TSP is trying to find amin-
imum length cost from an origin point (city) that
passes through all n vertices of a graph composed
of cities and gets back to the origin, generating a
complete cycle. Therefore, TSP has been studied

and approached on different ways in order to as-
similate a given problem closer to reality. Being an
NP problem, a brute force approach will prove to
be inefficient as the number of vertices increases.
An exact solution can be found using a comprehen-
sive exploration algorithm like Branch and Bound
but it is not computationally feasible to apply this
algorithm to real life examples. Other approaches
involve approximations to the solutions, which
have proven to give quality results without hurting
the computational running time. 2-Opt exchange
is implemented in Local Search algorithms, such
as Iterative Local Search and Simulated Annealing.
Construction Heuristics section include MST (Min-
imum Spanning Tree) Approximation. Through
this study, tables and plots representing accuracy
and running time of the different algorithms will
be provided in order to conclude the quality of the
different methods on different sized graphs. From
related work section it is clear that branch and
bound algorithm is expected to become exponen-
tially inefficient as the graph size increases, the
local search algorithms are expected to provide a
quick and accurate solution, although enhancing
the quality of solution is one of the difficult tasks,
and the heuristic construction are expected to be
the fastest approach with high error rates.

2 PROBLEM DEFINITION
The TSP can be understood as follows: Given a
graph G = (V, E), where nodes, cities, u, v ϵ V (set
of vertices, and (u,v)ϵ E (set of edges), minimize the
sum of costs, c(u,v), of a cycle passing through all



Algorithms CSE-6140, Fall 2018, Georgia Institute of Technology Team 8

nodes in V, while obtaining a Hamiltonian cycle.

n∑
i=1

ci(u,v) + cn(v,u)

The problem is simplified by letting G being an
undirected graph. Henceforth,there is no edge (u,v)
where c(u,v) not equal to c(v,u), which is the con-
dition of an asymmetric graph.

3 RELATEDWORK
Construction Heuristics
Construction heuristics are algorithms which de-
termine a tour based on some construction rules
but don’t improve over the tour iteratively[1]. The
simplest construction heuristic algorithm is the
nearest neighbour algorithm. In nearest neighbor
algorithm, the salesman starts from a city and
the next city is the one which hasn’t been visited
and is nearest to the current city. Though nearest
neighbour leads to sub-optimal solutions, it is a
good starting point for Local Search algorithms.
The minimum spanning tree (MST) approximation
computes the MST using Prim’s algorithm and
tries to shortcut the paths using Eulerian Tour built
on top of MST. More accurate implementations in-
clude Christofides algorithm and Clarke-Wright
algorithm.

Branch and Bound
Branch and Bound creates a state space containing
all the nodes (cities) and their connections (edges)
to other cities. The state space is represented in
the form of a matrix where an element in row ’i’
and column ’j’ represents the distance between the
city ’i’ and city ’j’.

Local Search - Solution Approximation
Local search algorithms have achieved down to
a percent of error of around 1-4 percent in large
graphs, as different variations of Lin-Kernighan
(LK) show. Even more, as shown in [6], the abil-
ity to combine different techniques on algorithms

such as k-opt and stochastic methods, without af-
fecting the run time of the model serve extensive
study and implementation of such models. Some
examples of the previous may be, simulated anneal-
ing, tabu search, and random walking. However,
the study will be focused on simulated annealing
and iterated search in order to compare an im-
proved version of the rudimentary method that
iteration provides compared to the more detailed
model simulated annealing provides.

4 ALGORITHMS
4.1 Construction Heuristics
4.1.1 MST Approximation

The MST Approximation algorithm is a 2-Approx
algorithm which uses Minimum Spanning Tree as
the starting point and shortcuts the Eulerian tour
to find the optimum path

Algorithm

(1) Given input points, Minimum Spanning Tree is
computed using Kruskal’s algorithm.

(2) The edges in the Minimum Spanning Tree are
sorted in the increasing order of their weights.
Hence, it is directly used for preorder traver-
sal. Both permutations of vertices in MST are
included for traversal.

(3) Depth First Search is implemented for traversal.

Data Structures

We use a priority queue to extract the edges while
implementing Kruskal’s algorithm. We use a list
of tuple of nodes and the distance between them
for computing Minimum Spanning Tree and per-
forming Depth First Search

Time Complexity

We perform 2 steps for computing the Hamiltonian
cycle. In this case, since it is a dense graph, the time
complexity of Kruskal’s algorithm is O(N 2loдN ).



Evaluating heuristic and local search-based approaches for Traveling Salesman ProblemAlgorithms CSE-6140, Fall 2018, Georgia Institute of Technology

This represents the time complexity of the algo-
rithm since Depth First Search has time complexity
of O(E + N ) = O(N 2).

4.2 Branch and Bound
Branch and Bound[4] creates a state space of all the
cities (nodes). Every edge has a cost matrix. The
cost matrix consists of the distance between the
nodes. Locations corresponding to nodes with dis-
tance from self are populated with infinity. When-
ever a particular edge is selected, the row corre-
sponding to the source node and the column cor-
responding to the target node of that edge in the
cost matrix are set to infinity. Then for each row
and column the minimum value is computed and
that value is subtracted from the respective row or
column. This converts the cost matrix to a reduced
cost matrix which has a property that each row
and column must at least have one zero element.
A node is expanded based on the value that it gets
assigned by adding the cost to transform the node’s
corresponding cost matrix into a reduced cost ma-
trix, the cost of converting the previous node’s
matrix into reduced matrix and the cost of the
edge between the two nodes. Each node from the
starting position is assigned a value according to
the above procedure and the edge corresponding
to the node with the least value is selected for fur-
ther expansion. This process is repeated till the
leaf node in the state space tree is reached. The
final cost that we get for the leaf node is the cost
of the path.

Data Structures
A two dimensional array (matrix) is used to repre-
sent a cost matrix of each node.

Time Complexity
The worst case time complexity for Branch and
Bound is same as that for brute force approach
which will be O(N !).

4.3 Local Search - Solution Approximation
2-OPT

The 2-OPT is probably the most basic local search
[3] and, hardly-arguably, the most used heuristic
to approximate the TSP problem. Therefore, it is
important to point out that 2-OPT does not require
the construction of an MST in order to perform
well. However, it is known that the initial cycle
given to the 2-OPT algorithm will affect signifi-
cantly both the accuracy and running-time of it
due to the simplicity of steps the 2-OPT algorithm
performs. Therefore, as MST gives a minimal solu-
tion to the distances between the nodes of a given
graph, it was used as reference to the creation of
the initial cycle.

Algorithm
(1) Generate a solution based on greedy choices,

which gives an MST and make a tour of vertices
that creates a cycle from node i, passing through
all nodes, and coming back to i. This cycle does
not necessarily need to be Hamiltonian, aka
tour is allowed to pass through vertices more
than once.

(2) From route generated from the MST, remove
duplicate nodes in the cycle and connect the
cycle using edges present and generating new
edges with cost c(v,b) based on Euclidian dis-
tance between nodes. Save the cost of the tour
(sum of costs)

(3) Change tour by exchanging two edges, and
record the cost of the new tour. If the cost is
less than the current best one, replace the cur-
rent best one with the new tour. Repeat until
no further improvement is seen.

4.3.1 Iterative Method
The approach implemented has as base the basic
Iterative Method for Local Search. However, in
order to prevent local minimas, a series of steps
and conditions were added to the method.
At first, the approach use theMST cycle, previously
mentioned, in order to converge to a solution. How-
ever, instead of consistently using the best optimal
solution so far at every iteration, the approach



Algorithms CSE-6140, Fall 2018, Georgia Institute of Technology Team 8

Table 1: Experimental Results for all algorithms on all datasets (exceptUKansasState).Time is in
sec . and RelativeError (RelErr ) is computed basis (AlдMinPath −OptPath)/AlдMinPath. Concorde
TSP Solver is used to determine the baseline OptPath.

Branch and Bound MST-Approx Iterative Method (2-OPT) Simulated Annealing

Instance Time Sol. Qual. RelErr. Time Sol. Qual. RelErr. Time Sol. Qual. RelErr. Time Sol. Qual. RelErr.

Atlanta 600.00 3106652 0.36 0.01 2488307 0.19 9.84 2003763 0.00 0.14 2008531 0.00
Berlin 600.00 19721 0.62 0.00 9967 0.24 137.78 8130 0.07 6.09 7618 0.01
Boston 600.00 2201193 0.59 0.01 1093837 0.18 459.92 898591 0.01 2.17 910120 0.02
Champaign 600.00 212027 0.75 0.01 64760 0.19 183.06 54381 0.03 7.18 52836 0.00
Cincinnati 1.81 277952 0 0.00 308133 0.1 0.02 277952 0.00 0.01 278754 0.00
Denver 600.00 553214 0.82 0.02 127081 0.21 253.01 113351 0.11 19.18 101947 0.01
NYC 600.00 7439017 0.79 0.02 1935350 0.2 192.11 1626765 0.04 12.81 1598185 0.03
Philadelphia 600.00 3232667 0.57 0.01 1727842 0.19 25.90 1395981 0.00 1.20 1406972 0.01
Roanoke 600.00 6889302 0.9 0.19 804046 0.18 600.00 786046 0.17 128.33 676554 0.03
SanFrancisco 600.00 5543943 0.85 0.03 1098155 0.26 353.23 912013 0.11 20.32 848199 0.05
Toronto 600.00 9512153 0.88 0.03 1630349 0.28 102.34 1279954 0.08 20.53 1195736 0.02
ulysses16 600.00 7263 0.06 0.00 7700 0.11 4.20 6864 0.00 0.40 6859 0.00
UMissouri 600.00 644379 0.79 0.04 170535 0.22 211.08 148776 0.11 25.62 135231 0.02

tends to randomize completely the route at its first
iterations without affecting the root node. This
idea finds its roots in Q-learning, as we randomize
the input in order for our method to explore as
many different solutions as it can find, but as the
number of random cycles increases, the probability
for the algorithm to generate another randomize
cycle decreases. Then, randomization steps keep
taking place, but on different sections of the best
cycle found so far.
Therefore, we can expect the approach to be better
than the basic iterative method, which converges
to an optimal solution and considers it a global
optimal solution. However, beware that the ex-
change optimization step is still done with 2-opt,
limiting the amount of combinations the optimiza-
tion step could make, but performing faster than
any other k-opt approach due to the time complex-
ity of this approach O(nk ) [2]. Having said so, the
solution reached in the period of time and number
of iterations may not be the optimal, despite the
randomization steps.

The initial parameters usedwere: rar (randomness) =
0.99, and radr (randomnessdecayrate) = 0.95.

Algorithm

(1) Find optimal solution using 2-OPT and store
solution if it is the best one so far.

(2) Using the current best route found, check if by
starting from a different node, keeping the same
route, the solution is improved. If it is improved,
then store solution. e.g. [1,2,3,4,1] to [1,3,4,2,1].

(3) As the algorithm will avoid getting stuck in a
solution, no matter how good, it checks if the
solution has converged by checking local best
previous solution to local best current solution.
If no, go to step , else continue.

(4) Check if a random probability is less than the
randomness. If yes, randomize route without
affecting first and last node, and multiply the de-
cay rate to rar (randomness). Otherwise, based
on the random probability, choose what section
of the global optimal route should be random-
ized.



Evaluating heuristic and local search-based approaches for Traveling Salesman ProblemAlgorithms CSE-6140, Fall 2018, Georgia Institute of Technology

(5) Check if the global best solution has changed.
Add one to the count if it has not, and make the
count equal to 0 if it has changed. Check if time
limit is met, check if number of iterations have
exceeded limit. If yes, finish. Otherwise, return
route from previous step to step 1.

It is important to highlight two things. The second
step can be taken care of through the 2-OPT step,
but it is considered to optimize the solution with a
simple low computational cost change. Also, make
notice that the number of iterations was not given
a value, as it is important to discuss further the
implications of the size of iterations. The bigger
the limit the more accurate the algorithm was, but
there was a lot of extra computation that was un-
necessary once the optimal solution was found. On
the other hand, if the limit is small, the accuracy
of the approach decreased significantly for bigger
graphs, but no unnecessary extra computations
were performed. For the sake of accuracy, the re-
sults provided were based on a limit of 100,000
iterations.

Fig. 1: Relative Errors - Iterative Method

Time Complexity
Same as 2-OPT the time complexity is O(n2). It is
important to notice that the iterative method will
continue to run until the time constraint is met or

the number of iterations reaches 100,000.

Fig. 2: Runtime - Iterative Method

4.3.2 Simulated Annealing
Simulated Annealing starts with a solution derived
from simple heuristic (based on greedy algorithm)
for finding the shortest route. Initially, the tem-
perature is kept higher so that the probability of
accepting a worse solution is higher. This gives
the algorithm a chance to jump out of any local
optimum it finds early on during execution. As the
temperature is reduced, the chance of accepting
worse solutions reduces, therefore allowing the
algorithm to gradually focus in an area of search
space where optimum solution is located. To gener-
ate a new solution, we use either reversing of path
between 2 randomly selected nodes or transposing
of segments within the path. The probability of
reversing is kept to be 80% while transposing is
used mostly to move out of local minima when
the algorithm gets stuck. The final solution quality
depends on the solution used for initialization and
hence, random path generation isn’t an optimal
way to start.



Algorithms CSE-6140, Fall 2018, Georgia Institute of Technology Team 8

Algorithm
(1) Compute initial path S using Greedy method.

Set initial temperature = 1000 and cooling coef-
ficient = 0.99.

(2) Generate S’ from S using reversing/3-opt oper-
ations.

(3) Accept S’ if ∆ = length(S’) - length(S) ≤ 0 or
accept S’ with probability exp(-∆/T)

(4) If maximum iterations reached or equilibrium
is reached, reduce temperature.

(5) Repeat steps 2-5 until temperature > 0.0001

Data Structures
We utilize an adjacency matrix to store the dis-
tances between nodes and lists to store the paths.
The complexity of using a adjacency matrix is
O(N 2) but it speeds up the implementation signifi-
cantly. For larger graphs, we use the ’NetworkX’
package basedGraph object to calculate path length
which ismore efficient since it stores half the edges.

Fig. 3: Relative Errors - Simulated Annealing

Time Complexity
The number of steps at each temperature are of
the order O(N ). Hence, the time complexity of the
annealing part is O(NK ) where K is the number of
cooling steps the algorithm undergoes. However,

we have to compute distance matrix for all pairs of
nodes initially which is O(N 2). Hence, time com-
plexity is O(N 2).

Fig. 4: Runtime - Simulated Annealing

4.3.3 List based Simulated Annealing (LBSA)
Simulated Annealing’s accuracy significantly de-
pends on the starting temperature and the cooling
schedule followed. To overcome this dependency,
S. Zhan et. al[7] proposed a List based Simulated
Annealing (LBSA) algorithm which algorithm uses
a list-based cooling schedule to control the temper-
ature drop. Based on the initial Greedy Solution, a
list of temperatures is created and the maximum
temperature in the list is used in the acceptance
criterion. The list is adapted iteratively as per the
topology of the solution space and the algorithm is
quite robust to parameter initialization. LBSA has
shown competitive performance compared with
state-of-the-art Simulated Annealing algorithms
which are based on instance-based sampling and
greedy search.

Algorithm
(1) Compute initial path S using Greedy method.

Create initial temperature list by generating
new solution(y) using the equation below and



Evaluating heuristic and local search-based approaches for Traveling Salesman ProblemAlgorithms CSE-6140, Fall 2018, Georgia Institute of Technology

Table 2: Comparison of relative errors and times for Local Searches

Iterative Method (2-OPT) Simulated Annealing LBSA

Instance Time RelErr. Best Qual. Time RelErr. Best Qual. Time RelErr. Best Qual.

Atlanta 9.84 0.00 2003763 0.14 0.00 2003763 1.00 0.00 2003763
Berlin 137.78 0.07 7930 6.09 0.01 7542 4.42 0.01 7542
Boston 459.92 0.01 893536 2.17 0.02 894197 3.14 0.00 893536
Champaign 183.06 0.03 52943 7.18 0.00 52643 8.47 0.00 52643
Cincinnati 0.02 0.00 277952 0.01 0.00 277952 0.15 0.00 277952
Denver 253.01 0.11 105079 19.18 0.01 100860 19.66 0.02 100498
NYC 192.11 0.04 1570522 12.81 0.03 1558565 8.82 0.02 1555060
Philadelphia 25.90 0.00 1395981 1.20 0.01 1395981 1.86 0.00 1395981
Roanoke 600 0.17 729978 128.33 0.03 667833 96.03 0.03 663202
SanFrancisco 353.23 0.11 880831 20.32 0.05 820995 27.86 0.03 810196
Toronto 102.34 0.08 1242504 20.53 0.02 1176151 35.33 0.05 1176151
ulysses16 4.20 0.00 6859 0.40 0.00 6859 0.62 0.00 6859
UMissouri 211.08 0.11 144831 25.62 0.02 133393 35.15 0.03 133456

updating the current solution(x) if y is better

t =
−(f (y) − f (x))

ln(p0)
(1)

(2) Generate S’ from S using the best operation
out of swap,reverse and insert. When the al-
gorithm gets stuck at a minima, transposing is
used along with these operations.

(3) Determine the acceptance probability usingpi =
−∆/ti . Generate random number and if its less
than pi , accept the bad solution.

(4) Also, compute the temperature based on for-
mula in equation (1) and insert it in the list.
This temperature is always less than the maxi-
mum temperature taken from the list since the
random number is less than the probability.

(5) Repeat steps 2-5 until the maximum iteration
count is reached. If the number of iterations
during which minimum distance remains con-
stant exceeds a threshold, stop the algorithm.

Data Structures and Time Complexity
The data structures and time complexity are simi-
lar as in the implementation of Simulated Anneal-
ing. The length of temperature list is fixed at 120
and the number of iterations ’K’ is limited to 10000.

Fig. 5: Relative Errors - LBSA



Algorithms CSE-6140, Fall 2018, Georgia Institute of Technology Team 8

Fig. 6: Runtime - LBSA

5 EMPIRICAL EVALUATION
Platform Details : The programming platform is
Python 3.6. The system has a RAM of 8 GB and 2.7
GHz Intel i7 processor with Microsoft Windows
platform.

The programs are run using the given .tsp files
and this procedure is repeated multiple times for
Local Search algorithms. We have plotted SQD,
QRTD and box plots to study the time vs solution
quality behaviour of various algorithms. For an
analysis of timings and relative errors, please refer
to Table 1 and Table 2. Table 2 gives an analysis of
relative error along with the best solution found
for Local Search Algorithms. Box plots for the
SolutionComputationTime and RelativeErrors for
each algorithm are included in Figures 1 - 6. We
have utilized Concorde software toolkit [5] to
compute the baseline solution with which we com-
pare our best solution. All results have been ob-
tained within the execution time limit of 10 min-
utes.
While,MST-Approximation algorithm gave a lower
bound in the range 0.1 - 0.25, Local Search algo-
rithms performed significantly better albeit with
higher Execution Time. LBSA achieved highly ac-
curate solutions in many instances as expected.

Branch and Bound algorithm could finish execu-
tion only for Cincinnati .tsp instance with an ex-
act solution and gave a solution for ulysses16.tsp
within 6% in 10 minutes. Roanoke .tsp seems to
be a relatively complex problem to solve given
the computation time required by all algorithms
is the highest and BranchandBound has highest
RelativeError for that instance within 10 mins.

6 DISCUSSION

Branch and Bound algorithm is a comprehensive
exploration algorithm that tries to expand all pos-
sible combinations of states and return the best
possible route corresponding to least path cost.
Due to it’s nature of exploring all possible states,
it becomes computationally unfeasible to get an
output for large graphs using Branch and Bound
although, it is guaranteed to give an optimal route
if it is allowed to run for a sufficiently long time.
The ideal compromise between execution time and
solution quality are Local Search algorithms.Three
of these were analysed. Iterative Method involved
2-OPT moves with randomization while Simulated
Annealing involved 2-OPT, 3-OPT and additional
moves like Swap, Insertion which have been found
to be quite effective [7]
As we can see from the comparisons made in Table
1, and Table 2, the best performance regarding
accuracy and execution time was LBSA. This is
further supported by Figures 7 and 9, and Figures
8, and 10, in which we can visually compare both
approaches. The comparison was made based on
the worst performance of Local Search algorithms,
which in our case is Iterative method, against the
best one, LSBA.
LBSA reduces the execution time as well as gives
more accurate results compared to Simulated An-
nealing. This is because the temperatures which
its initialized is more adaptive to the search space
and the rate of cooling is slower. Moreover, for
Simulated Annealing, doing the transpose opera-
tions (equivalent to 3-opt) when its stuck in local



Evaluating heuristic and local search-based approaches for Traveling Salesman ProblemAlgorithms CSE-6140, Fall 2018, Georgia Institute of Technology

minima helps in achieving better solution faster.
Also, initiating with a nearest neighbour based so-
lution vs randomized solution is a key factor and
we observed significantly lower runtime when ini-
tializing with a sub-optimal solution.

7 CONCLUSION

We have analyzed 5 algorithms for solving the
Traveling Salesman problem over various instances
of TSPLIB datasets. We achieved quite good accu-
racy using Local Search Methods and evaluated
the merits and drawbacks of our approaches. We
hope to fine tune the implementation of LBSA for
a highly optimized algorithm in the future

REFERENCES
[1] Marshall Bern and David Eppstein. 1997. Approxima-

tion Algorithms for NP-hard Problems. PWS Publish-
ing Co., Boston, MA, USA, Chapter Approximation
Algorithms for Geometric Problems, 296–345. http:
//dl.acm.org/citation.cfm?id=241938.241946

[2] Andrius Blazinskas and AlfonsasMisevicius. 2011. Com-
bining 2-opt, 3-opt and 4-opt with k-swap-kick pertur-
bations for the traveling salesman problem. Kaunas
University of Technology, Department of Multimedia En-
gineering, Studentu St (2011), 50–401.

[3] Matthias Englert, Heiko Röglin, and Berthold Vöcking.
2007. Worst case and probabilistic analysis of the 2-Opt
algorithm for the TSP. In Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 1295–
1304.

[4] Leo Liberti. 2015. Branch and Bound for
the Travelling Salesman Problem. (2015).
http://www.enseignement.polytechnique.fr/
informatique/INF431/X09-2010-2011/AmphiLL/
branch_and_bound_for_TSP-notes.pdf

[5] University of Waterloo. 2003. Concorde Software
Toolkit. (2003). http://www.math.uwaterloo.ca/tsp/
concorde/

[6] César Rego, Dorabela Gamboa, Fred Glover, and Colin
Osterman. 2011. Traveling salesman problem heuristics:
Leading methods, implementations and latest advances.
European Journal of Operational Research 211, 3 (2011),
427–441.

[7] Shi-hua Zhan, Juan Lin, Ze-jun Zhang, and Yi-wen
Zhong. 2016. List-Based Simulated Annealing Algo-
rithm for Traveling Salesman Problem. Intell. Neuro-
science 2016 (March 2016), 8–. https://doi.org/10.1155/
2016/1712630

http://dl.acm.org/citation.cfm?id=241938.241946
http://dl.acm.org/citation.cfm?id=241938.241946
http://www.enseignement.polytechnique.fr/informatique/INF431/X09-2010-2011/AmphiLL/branch_and_bound_for_TSP-notes.pdf
http://www.enseignement.polytechnique.fr/informatique/INF431/X09-2010-2011/AmphiLL/branch_and_bound_for_TSP-notes.pdf
http://www.enseignement.polytechnique.fr/informatique/INF431/X09-2010-2011/AmphiLL/branch_and_bound_for_TSP-notes.pdf
http://www.math.uwaterloo.ca/tsp/concorde/
http://www.math.uwaterloo.ca/tsp/concorde/
https://doi.org/10.1155/2016/1712630
https://doi.org/10.1155/2016/1712630


Algorithms CSE-6140, Fall 2018, Georgia Institute of Technology Team 8

8 APPENDIX

Fig. 7: QRTD Plot - Cincinnati (LBSA)

Fig. 8: SQD Plot - Cincinnati (LBSA)

Fig. 9: QRTD Plot - Cincinnati (Iterative Method)

Fig. 10: SQD Plot - Cincinnati (Iterative Method)



Evaluating heuristic and local search-based approaches for Traveling Salesman ProblemAlgorithms CSE-6140, Fall 2018, Georgia Institute of Technology

Fig. 11: QRTD Plot - Cincinnati (SA)

Fig. 12: QRTD Plot - Boston (SA)

Fig. 13: QRTD Plot - Boston (LBSA)

Fig. 14: QRTD Plot - Boston (Iterative Method)



Algorithms CSE-6140, Fall 2018, Georgia Institute of Technology Team 8

Fig. 15: SQD Plot - Cincinnati (SA)

Fig. 16: SQD Plot - Boston (SA)

Fig. 17: SQD Plot - Boston (Iterative Method)

Fig. 18: SQD Plot - Boston (LBSA)


	Keywords
	1 Introduction
	2 Problem Definition
	3 Related Work
	Construction Heuristics
	Branch and Bound
	Local Search - Solution Approximation

	4 Algorithms
	4.1 Construction Heuristics
	4.2 Branch and Bound
	4.3 Local Search - Solution Approximation

	5 Empirical Evaluation
	6 Discussion
	

	7 Conclusion
	

	References
	8 Appendix

